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Abstract: 

This project derives a feedback linearization controller to control the yaw of a two-dimensional rocket and 

achieve maximum vertical acceleration. The dynamic equations are first developed for a rocket with no control input, 

this was necessary to prove the natural stability of the rocket trajectory. With this stability confirmed it is possible to 

develop a feedback linearization controller that not only achieved zero yaw, but zero tangential velocity. 
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Introduction (Development): 

Necessary before any controller design was to develop the primary equations for rocket dynamics. Significant 

simplification was utilized for a multitude of reasons. First, many aerodynamic effects are empirically derived from 

experiments, because of the nature of rocket science relating to the department of defense specific values or 

coefficients are confidential. Second, this investigation’s primary goal was to drive the rocket’s yaw to its desired 

value. This made it beneficial to assume negligible thermodynamic effects and fluid variations. 

Rocket Free Body Diagram: 

 
Figure 1: Rocket Diagram [1] 

 

Figure 1 represents the starting point of the derived models used in this project [1]. 

FD represents the drag force opposite to the velocity, FL the lift force perpendicular to velocity, W the 

weight, and FT the thrust provided by the rocket. The weight acts about the center of gravity of the rocket and the 

aerodynamics forces FD and FL act about the center of pressure. Φ represents the angle of the velocity vector from 

the local horizon and α the angle between the rocket’s central axis and the velocity- Ψ will refer to the angle from 

the local axis to the rocket’s central axis. 

 Both FD and FL can be resolved into forces parallel and perpendicular to the rocket’s central axis, FA and 

FN. Both forces are directly dependent on the dynamic pressure and their respective coefficients shown below: 

𝐹𝑁 = (1/2)(𝜌)(𝑉2)(𝐴)(𝐶𝑁)    (eq.1) 

𝐹𝐴 = (1/2)(𝜌)(𝑉2)(𝐴)(𝐶𝐴)    (eq.2) 

A represents the frontal area of the rocket, V the absolute velocity, and ρ the density of air. Both CN and CA can be 

resolved into functions dependent on α and the drag coefficient (CD). 

𝐶𝑁 = 𝐶𝑁𝛼 ∗ 𝑠𝑖𝑛(𝛼)    (eq.3) 
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𝐶𝐴 =
𝐶𝐷∗𝑐𝑜𝑠(𝛼)−(1/2)∗𝐶𝑁∗𝑠𝑖𝑛(2∗𝛼)

1−(𝑠𝑖𝑛(𝛼))2
   (eq.4) 

It should be noted that to avoid a singularity in MATLAB the value of 1 in the denominator of equation 4 is slightly 

perturbed. CNα and CD are both inherent to the design of a rocket and dependent on the Mach number and various 

fluid properties. 

 The dynamic equations are developed using two perspectives. The rotational equations are taken from the 

perspective of the rocket about its center of gravity, whereas the translational frame is taken globally. First the 

rotational equation later utilized in the control law derivation is developed. 

          𝐽 ∗
𝑑2𝛹

𝑑𝑡2 = −(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁   (eq.5) 

Rcg-cp represents the moment arm from the center of gravity to the center of pressure. J represents the total moment 

of inertia of the rocket about the center of gravity. 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −𝐹𝑁 ∗ 𝑠𝑖𝑛(𝛹) − 𝑐𝑜𝑠(𝛹) ∗ 𝐹𝐴 + 𝐹𝑇 ∗ 𝑐𝑜𝑠(𝛹)  (eq.6) 

𝑚 ∗
𝑑2𝑌

𝑑𝑡2 = 𝐹𝑁 ∗ 𝑐𝑜𝑠(𝛹) − 𝑠𝑖𝑛(𝛹) ∗ 𝐹𝐴 + 𝐹𝑇 ∗ 𝑠𝑖𝑛(𝛹) − 𝑚 ∗ 𝑔  (eq.7) 

FT represents the force due to thrust, m the total mass of the rocket and g the acceleration due to gravity. 

 Both the moment of inertia and total mass are subject to change due to the change in mass propelling the 

rocket. Each of these dependencies are outlined below. 

𝐹𝑇 = 𝑚̇𝑓𝑉𝑒    (eq.8) 

Where mf represents the mass of fuel and Ve the escape velocity from the rocket nozzle. Because the mass of the fuel 

tank varies both the moment of inertia and total mass are time dependent. 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑓 + 𝐽𝑟    (eq.9) 

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑓 + 𝑚𝑟   (eq.10) 

The angle of the velocity vector can be defined as follows: 

∅ = tan−1(
𝑉𝑦

𝑉𝑥
)    (eq.11) 

Implemented with 4-quadrant tangent in MATLAB. 

α can then be defined additionally as: 

𝛼 = 𝛹 − ∅    (eq.12) 

Overview of assumptions and parameter values: 

• The density of air is constant 

• The flow rate of mf is constant 

• CNα and CD are constant and do not vary with Mach number 

• The center of gravity of the rocket and fuel tank coincide 

Clearly, these assumptions present significant inaccuracies in the simulation. How the controller would adjust for 

these parameters in a physical application will be addressed later. 
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Necessary for the stability of the rocket is that the center of pressure lies behind the center of gravity, this 

results in a restoring torque that aligns the rockets yaw or Ψ with its current velocity. This is the primary purpose of 

fins on a rocket or missile- to move the center of pressure rearward. Further the moment of inertia for the rocket is 

reduced to that of the rod about its centroid and the fuel tank of that of a sphere. Resulting in: 

𝐽𝑅 = (1/12) ∗ 𝑚𝑟 ∗ 𝐿𝑟
2   (eq.13) 

𝐽𝑓 = (2/3) ∗ 𝑚𝑓 ∗ 𝑅𝑓
2   (eq.14) 

The parameters listed in the table 1 below have been accumulated from various sources being average industry 

values and dimensions of retired air to surface missiles or estimated. 

Table 1: Rocket Parameters 

CD 0.5 

CNα 6.3 

FT 130 * 10^4 (Newtons) 

Mr  810 kg 

Mf (initial) 560 kg 

Change of fuel mass -28 (kg/s) 

Lr (length of rocket) 4 m 

Lcg (distance to the center of gravity) 2 m 

Lcp (distance to center of pressure) 2.46 m 

A (frontal area) 0.166 m^2 

Ρ (density) 1.225 kg/m^3 

 

Uncontrolled Simulation Results: 

The rocket is assumed to already be in flight with undesired initial conditions. 

Table 2: Simulation Initial Conditions 

Xo 0 

Vxo 200 (m/s) 

Yo 0 

Vyo 200 (m/s) 

Ψo 0.5 (rad) 

d Ψo/dt 0.5 (rad/s) 
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Figure 2 
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Figure 3 
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Figure 4 

The rocket achieves stability, however, has an infinite amount of equilibrium trajectories that are highly dependent 

upon the initial conditions of the rocket and any additional disturbances.  

Controller Derivation: 

The controller is derived from the feedback linearization technique. However, before the control law is 

developed it is important to select the correct variable it utilizes as the output to achieve the desired goal- being to 

maximize vertical acceleration. If Ψ is maintained at 90° then a maximum amount of the throttle force FT can 

influence the vertical acceleration over time, there are further additional benefits to selecting Ψ as the output that 

will be discussed. The best approach to manipulate Ψ through physical means comes down to design and 

implementation of the rocket itself. Some approaches use articulating air foils or thrust vectoring. As it was simple 

modification to the original dynamic equations thrust vectoring was employed, for which a crude drawing may be 

found in the appendix (A.1). The primary equations of motion are then modified as follows with the additional 

parameter of Ө as the control input. 

𝐽 ∗
𝑑2𝛹

𝑑𝑡2 = −(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁 + (𝑅𝑅−𝑐𝑔)𝐹𝑇 ∗ 𝑠𝑖𝑛(Ө)   (eq.15) 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −𝐹𝑁 ∗ 𝑠𝑖𝑛(𝛹) − 𝑐𝑜𝑠(𝛹) ∗ 𝐹𝐴 + 𝐹𝑇 ∗ 𝑐𝑜𝑠(𝛹 + Ө)  (eq.16) 

𝑚 ∗
𝑑2𝑌

𝑑𝑡2 = 𝐹𝑁 ∗ 𝑐𝑜𝑠(𝛹) − 𝑠𝑖𝑛(𝛹) ∗ 𝐹𝐴 + 𝐹𝑇 ∗ 𝑠𝑖𝑛(𝛹 − Ө) − 𝑚 ∗ 𝑔 (eq.17) 

Where RR-cg represents the length from the center of gravity to the thrust force. To achieve Feedback-Linearization 

the equations are put into the following standard form: 

𝜁̇ = 𝐴𝑐𝜉 + 𝐵𝑐(𝑏(𝜁, 𝜂) + 𝑎(𝜁, 𝜂)𝑢)    (eq.18) 
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𝜂̇ = 𝑓(𝜂, 𝜁)   (eq.19) 

𝑦 = 𝐶𝑐𝜁    (eq.20) 

Given the output: 

𝑦 = 𝜓 − 90°   (eq.22) 

Then, 

𝜁1 = 𝜓 − 90°   (eq.23) 

𝜁1̇ = 𝜁2 = 𝜓̇   (eq.24) 

𝜁2̇ = 𝜁3 = 𝜓̈   (eq.25) 

𝜓̈ is directly affected from the control input Ө, resulting in a relative degree of 2, and would be advantageous if: 

𝜓̈ = −𝑘1𝜁1 − 𝑘2𝜁2 = 𝜔  (eq.26) 

With equation 15 back solving for Ө results in: 

Ө = sin−1(
𝐽∗𝜔+(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁

𝐹𝑇(𝑅𝑅−𝑐𝑔)
)   (eq.27) 

k1 and k2 are selected as 100 and 200 to ensure the poles lie in the left half plane. Because the relative degree of the 

system does not match the degree of the original system, the stability of the system is determined by equation 19. 

This is also known as input-output linearization which is restricted by the zero dynamics of equation 19. The 

transformed system then takes the form of: 

[
𝜉1̇

𝜉2̇

] = (
0 1

−𝑘1 −𝑘2
) [

𝜁1
𝜁2

]   (eq.28) 

With: 

[
 
 
 
 
𝜂1

𝜂2
𝜂3
𝜂4

𝜂5]
 
 
 
 

=

[
 
 
 
 
𝑥
𝑉𝑥
𝑦
𝑉𝑦
𝑚𝑓]

 
 
 
 

   (eq.29) 

Then: 

[
 
 
 
 
𝜂̇1

𝜂̇2

𝜂̇3

𝜂̇4

𝜂̇5]
 
 
 
 

=

[
 
 
 
 
𝑉𝑥
𝑎𝑥

𝑉𝑦
𝑎𝑦

𝑚̇𝑓]
 
 
 
 

   (eq.29) 

However, to achieve the desired goal the stability of Vy, ay and constant the constant mass flow rate is of no concern, 

rather the concern is that of Vx and ax.  
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Elementary Stability Analysis: 

First, given the relative magnitude of the thrust force FT and assuming reasonable bounds on the magnitude 

of the velocity. It can be concluded that the vectored force FT will be able to overcome any moments generated on 

the rockets body. Then it is assumed that Ψ will be driven to 90°, the question being how this impacts the tangential 

acceleration given a non-zero Vx and how the controller responds given an instantaneous Ψ of 90° but a nonzero 

rotational velocity. 

First, assuming a Ψ of 90°, a rotational velocity of zero and substituting for Ө equation 16 reduces to: 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −𝐹𝑁 + 𝐹𝑇 ∗ 𝑐𝑜𝑠(90° + sin−1(
(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁

𝐹𝑇(𝑅𝑅−𝑐𝑔)
))  (eq.30) 

Utilizing the following identity: 

𝑐𝑜𝑠(90° + sin−1(𝑎)) = −𝑎    (eq.31) 

Equation 30 becomes: 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −𝐹𝑁 − (
(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁

(𝑅𝑅−𝑐𝑔)
)    (eq.32) 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −(1 +
(𝑅𝑐𝑔−𝑐𝑝)

(𝑅𝑅−𝑐𝑔)
)𝐹𝑁    (eq.33) 

With: 

𝛽 ∶= (1 +
(𝑅𝑐𝑔−𝑐𝑝)

(𝑅𝑅−𝑐𝑔)
)    (eq.34) 

And β>0, substituting for FN results in: 

 𝑚 ∗
𝑑2𝑋

𝑑𝑡2 = −(𝛽)(1/2)(𝜌)(𝑉2)(𝐴)(𝐶𝑁𝛼 ∗ 𝑠𝑖𝑛(𝛼)) (eq.33) 

Which with equation 11 and 12 is proportional to: 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 ∝ −𝑠𝑖𝑛(90° − tan−1(
𝑉𝑦

𝑉𝑥
))   (eq.34) 

Given that Ψ will be forced to 90° repeatedly, the magnitude of Vy will be much greater than Vx over time, with the 

velocity vector approaching 90°. Therefore, it is the sign of Vx that influences the sign of the tangential acceleration 

vector. This results in two cases: 

For a negative Vx: 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 ∝ −𝑠𝑖𝑛(−ϵ)    (eq.35) 

Where ϵ>0 

Therefore: 

𝑚 ∗
𝑑2𝑋

𝑑𝑡2 ∝ ϵ     (eq.36) 
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Resulting in positive acceleration which reduces the negative Vx component. For a positive Vx the inverse holds, 

therefore given an instantaneous position of 90° and no rotational velocity the controller will work to eliminated 

tangential accelerations. Further if we assume that Ψ is instantaneously 90° and the rotational velocity is not, the 

control law reduces to: 

Ө = sin−1(
𝐽∗(−𝑘1∗𝜓̇)+(𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁

𝐹𝑇(𝑅𝑅−𝑐𝑔)
)    (eq.37) 

Which implies: 

𝑠𝑖𝑔𝑛(Ө) = 𝑠𝑖𝑔𝑛(𝐽 ∗ (−𝑘2 ∗ 𝜓̇) + (𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁)   (eq.38) 

Or with a non-zero Ψ: 

𝑠𝑖𝑔𝑛(Ө) = 𝑠𝑖𝑔𝑛(𝐽 ∗ (−𝑘1 ∗ (90°𝜓) − 𝑘2 ∗ 𝜓̇) + (𝑅𝑐𝑔−𝑐𝑝)𝐹𝑁)  (eq.38) 

In which case the value of Ө works to not only control an angular position of 90° and zero angular velocity with the 

feedback term but also counteract any rotational acceleration due to the normal force at the center of pressure. All 

these results imply that driving the output to the desired values will not only be maintained and physically possible, 

but this act will in turn drive the tangential velocity to zero-naturally. This results in an elegant single input 

controller that drives multiple inputs of a non-linear system to desired equilibrium values. Further, these 

characteristics are only possible because the natural stability of the uncontrolled rocket, because of this restoring 

torque and the ability to accelerate the rocket in the desired direction the velocity is constantly realigned with the 

desired angle of 90°. This effect of restoring torque, as mentioned previously, comes from the fact that the center of 

pressure lies behind that of the center of gravity. 
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Controlled Simulation Results: 

Table 3: Gain 

K1 5 

K2 4 

 

 
Figure 5 
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Figure 6 
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Figure 7 

Discussion: 

The presented results in figures 5, 6 and 7 demonstrate an impressive control method over the trajectory of 

the vertical accelerating rocket. Additional results showed that by varying gain constants performance was impacted. 

First setting the k2 gain greater than the k1 represented an improvement, this may be because the control variable 

only must pass through one relative integrator to affect this parameter whereas the position requires two representing 

more delay in the system. Further, these parameters where initially set to grandiose magnitudes, which once lowered 

demonstrated an improvement in performance. Initially with high gain the response represented that of an 

overdamped system lowering them pushed the response to critically damped up until overshoot occurred-

corresponding to under damped. It would be desirable to be able to analytically solve for the desired gain values via 

a transfer function. This would be done by looking directly at the transfer function corresponding to the input-output 

relationship and using one of several synthesis techniques (root locus, pole placement, etc.). Also, one trial utilized 0 

gains to evaluate if the feedforward term alone could stabilize the rocket. This resulted in a limit cycle in which the 

rocket perpetually flew in a circle. This is because the rocket kept trying to counteract the given moments, there by 

generating a new velocity and torque, which resulted in a positive feedback loop where the controller could not 

account for the error in rotation.  

Notes on implementation and approximations: 

Clearly, implementing this controller on a real rocket neglects a sleuth of both physical effects and 

parameters. But this controller could be improved upon to prove tangible viability. First, it would be necessary to 

model the aerodynamics of the rocket itself. Deriving empirical relations for the aerodynamic constants and their 

dependance on fluid properties and Mach numbers. Given estimations of these parameters it would be possible to 

use a form of Gain Scheduling to vary the controller parameters. Further, if the dynamic equations of the rocket alter 

fundamentally at some speed, then an entirely different control method could be utilized. Necessary in the 
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implementation of this controller would be cutting edge accelerometers- the output from which could be utilized to 

create state estimates that feed directly into the control law. Additionally, parameters such as the force of thrust and 

mass burn rate may vary. These must be estimated from the given air density at the corresponding altitude and 

additional thermodynamic parameters such as combustion chamber temperature and pressure. 

 One folly of this controller is the means of articulation rely on the presence of a thrust. Given the fact that 

the rocket or rather missile may still be in flight after the fuel has been expended, it would be advantageous to have 

an additional means of control- for example rotating fins. It may even be advantageous to control the rate of 

combustion directly- typically rocket nozzles are optimized for one altitude and this results in inconsistences. 

 Further the assumptions of this simulation assumed a 2-D space. The equations of a real system would be 

of an extensively higher dimension (from additional directions and unknown parameters). This would also require 

more means of control such as thrust rotation and tilt.  

Notes on position and altitude control: 

 Given the results, the position in the tangential direction is not driven to zero once the rocket has fully 

stabilized. Is it possible to eliminate this position difference given the current controller? Yes, this would be done by 

first detecting this position deviation and modulating the set point of alpha. This would require a predictive model of 

how to vary α to first approach the desired position and then stabilize at said position. This same strategy could be 

employed to keep the rocket flying tangentially at a constant altitude. This could be utilized in an air to surface 

missile like those launched from fighter jets. First, the controller would determine the necessary α such that the 

vertical forces have a net value of zero with a control input of zero. Then the controller would correspond by 

utilizing the control input to achieve this angle. 

Conclusion: 

Overall, the results of this report demonstrate the utility of the feedback linearization technique. By 

strategically pick the right output parameter and designing the system to be inherently stable control of complex 

systems, like that of rockets, is possible. 

Future iterations on this project could involve building parameter estimation scheme or improving the 

accuracy of the simulation. Eventually this could include a redesign of the system for 3 dimensions. Further work 

could also be put into developing a model to predict the required stabilization angle for various velocity vectors. 

This could then be used to implement a tracking-based controller creating a guided rocket system.  
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Appendix: 

A.1: Rocket Control Mechanism 
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A.2: No Controller Code 
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A.3: Code Yaw Controller 
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