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Interceptor Missile Guidance through Deep
Reinforcement Learning

Lance Fletcher , Roman Yoder

Abstract—The following project details the application of reinforcement learning to develop a policy for interceptor missile guidance.
First the motivation and scope of the project are outlined. Then, the Markov Decision Process (MDP) is formulated and the related work
is discussed. The problem is formalized as an agent missile tracking and intercepting a target missile before it has the chance to impact
the ground. The implementation utilized an agent relative observation space and an advantage actor-critic algorithm. The reward
function was uniquely developed and showed the convergence to desirable policies even in the presence of disturbances to the target
missiles heading. Further, in some cases the agent could learn to account for states that resulted in a higher future probability of

interception due to the approach characteristics.

« GitHub: https://github.com/LFletch1/Final-RL-Project

o Youtube: https://youtu.be/PxFW99PNITO

Note: the contribution of each member is described in the appendix at the end.

Index Terms—Markov Decision Process, Reinforcement Learning, Missile Guidance

1 INTRODUCTION

NTERCEPTOR missiles are critical to military defense in
Ithe modern age of warfare by preventing incoming mis-
siles from reaching their target. Interceptor missiles work
by either directly colliding with a target missile or by
detonating a small warhead to release shrapnel with the
goal of detonating the target missile. Typically these are heat
seeking missiles which are guided with a control system that
utilizes infrared and radar sensors. Historically the guidance
of a missile’s trajectory was accomplished via traditional
control theory; typically done through the use of a pro-
portional navigation law. Traditional control methodologies
have proved effective in the guidance of intercepting mis-
siles but not without shortcomings [4]. These shortcomings
result from the fact that implementation requires a dynamic
model where even the most complicated of these models
are reliant on simplifications and assumptions to predict
the necessary control input. To combat this, the application
of reinforcement learning (RL) algorithms to improve the
overall performance has garnered recent attention. The mo-
tivation of this project is to propose, study, and implement
the use of RL to guide interceptor missiles to target missiles.

2 RELATED WORK
2.1 Reinforcement Learning in Missile Guidance

Sufficient guiding of a missile requires a model which
encapsulates a continuous state space and action space.
Shalumov [10] utilizes the policy gradient algorithm RE-
INFORCE to develop a policy for a target-missile-defender
engagement. In this situation a target missile defends itself
from being intercepted by another missile. This is done
by launching a defender missile which will intercept the
other missile. The learned policy proved to successfully
determine when the target missile should launch a defender

missile to prevent interception. In Anti-Interception Guidance
for Hypersonic Glide Vehicle [6], guidance of a glide vehicle
is performed through developing a policy using a modified
version of deep deterministic policy gradient (DDPG). Anti-
interception guidance of a hypersonic glide vehicle has
many real-time constraints similar to the guidance of a
missile, thus policies created through RL are useful for many
of the same reasons.

Some researchers have applied reinforcement learning
to find the optimal gains of the missile guidance laws by
utilizing traditional control theory to create a novel form of
gain scheduling [5]. He et al. mentions that utilizing known
information in dynamics and kinematics to structure a RL
algorithm can improve efficiency based on prior knowledge.
In fact, this approach of properly structuring the reward
function and the Markov decision process (MDP) is not
new and has been utilized by both He et al. and Du ef al.
Both take influence from traditional control error dynamics
to structure their reward function and MDP. Rather than
representing the state space of both the missile and target
missile as Cartesian coordinates in the MDP state space,
both authors take a more elegant approach, utilizing the
relative distance and velocity from one missile to the other.
Hu states that a naive and ineffective approach to the
reward function is to simply base it on whether the missile
successfully intercepts the target or not. Rather, a heuristic
is developed for the reward function that is dependent on
the zero effort miss (ZEM) and the constant reduction of
the relative distance between the two missiles. ZEM can be
defined as the geometric relationship to quantify the miss
distance between the interceptor and target missile with
the current velocity and a given interception time. [1], [4].
Both articles showed promising results, but an improved
implementation by Hu et al. utilized the same MDP and
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reward function but restricted the action output to that
of the gain ratio in a traditional proportional navigation
guidance control law with promising results.

2.2 Pursuit-Evasion Problems

A type of problem similar to the guidance of an interceptor
missile is the pursuit-evasion problem. A pursuit-evasion
problem involves an agent (pursuer) who chases another
agent (evader) with the goal of catching it. It can easily
be seen how the control of an interceptor missile has the
same role as a pursuer in the pursuit-evasion problem. Thus,
many techniques applied to pursuit-evasion problems are
likely applicable to the specific missile guidance problem
this paper focuses on. In [14], DDPG is utilized to train a
pursuer in an environment where the pursuer and evader
are modeled with the dynamics of cars. The paper also
evaluates how well a pursuer and evader can learn simul-
taneously to learn behavior that helps their own opposing
objectives. Similar to [3] and [5], the reward function is also
based on the change in distance between the pursuer and
evader. [13] improved on the multi-agent version of the
pursuit-evasion problem by applying a multi-agent DDPG
based on unmanned aerial vehicle dynamics. Along with
the positions of each agent in the environment, individual
agents also observe a set of sensors which allow them
to detect objects and other agents in their vicinity. The
reward function utilized is a combination of three reward
functions based on the distance between a pursuer and
evader, whether a pursuer has hit an obstacle, and whether
the pursuer has successfully caught the evader.

The approach was influenced by many of the papers
mentioned above, with many of our own modifications
made to ultimately find a solution to the problem.

3 APPROACH

3.1 State Space

Throughout this paper the missile that will be controlled by
a learned policy will be referred to as the agent missile and
denoted as A. Also, the unit system used for distance and
velocity is not specific to any specific measurement and are
simply referred to as units. The missile which is to be inter-
cepted will be referred to as the target missile and denoted
as T'. The overall implementation of the MDP and associ-
ated environment was more cumbersome than originally
predicted. Through significant trial and error the MDP was
modified while the reward function was fine tuned. Initially
the observation given to the agent was simply the Cartesian
coordinates and heading angle of both the agent missile and
target missile, which proved to be a convoluted approach. A
more effective approach that took influence from previous
research [3], [5] was to define an agent centered state space.
This reduced the overall complexity of the state-space and
allowed the same relative configurations of the agent and
target missiles to be the same regardless of global location.
This was done by defining the state space as the distance,
angle, and derivative of both quantities between the agent
and target missiles. Additionally, the y-coordinate of the
agent missile was included in the state space for the purpose
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of allowing the missile to know how close to the ground it
is.

S = {T’ )\7,';’ ).‘7yA}

These state space variables were heavily influenced by [5]
and can be seen in figure 1. Since this state space is relative
to the agent missile, what would have been considered
unique observations based on the global coordinates can be
reduced, therefore different agent and target Cartesian coor-
dinates combinations can be accounted as the same overall
state by the agent. This simplified state space allows the
agent to quickly learn an effective policy. A terminal state
is when a collision between the agent and target missiles
occurs. In this project, a collision is defined as when r is less
than or equal to 20 units.

e={s:VST ¢S}
s.t.r <20

The state is also considered terminal if either the target or
agent missile impacts the ground.

Fig. 1. Agent missile state space visualization. A very similar graphic
appears in [5].

As shown in figure 1, r is defined as the relative distance
between both missiles. While A is the counter-clockwise
angle of r with respect to the z-axis.

r= (T = A2+ (T, — 4,7
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Both 7 and )\ can be defined as:

7= Vrcos (O — \) — Vacos (64 — )

A= 1(VT sin (f7 — \) — Vasin (04 — \))
T

Here V represents the velocity of the agent or target missile
respectively and 6 denotes the respective heading angle of
the missiles with respect to the z-axis. Simply, 6 represents
the angle of velocity of a missile. Since these quantities can
be defined analytically, there is no need to include past states
in the observation space as done in many RL applications

[8].
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3.2 Action Space

Also necessary is the definition of the action space which
represents the actions available for the agent to take.
The variables and dimensions of the action space varied
throughout the implementation of the project. Particularly
it was debated whether the agent missile should be able
to adjust its own velocity; however, for simplicity it was
decided to only allow the agent missile to alter its heading
angle. This action space can be defined below:

A(s) = Aba, Vs € S
st. —15° < Ay < 15°

3.3 Reward Function

Arguably the most critical aspect of the MDP to guarantee
the convergence to a desirable policy is the design of the
reward function. An initial naive approach was to reward
the agent upon successful collision with the target missile
and penalize it with a negative reward when the target
missile impacted the ground. However, this does not result
in a reward scheme that influences the agent missile to learn
to steer towards the target. Another reward function we
attempted was ZEM based and was very similar to reward
function used in [5]. This reward scheme made use of the
ZEM geometric constant as well as several other reward
parameters, neglecting the use of an effort penalization.

Ri=R,+ R, + R,

The intention of this reward function was as follows:
generate a negative reward any time the the relative mis-
sile distance grows with R,,, geometrically encourage the
agent missile to steer such that the estimated future miss is
decreased (which is scaled by its initial value) with 7., and
reward the agent when it is within a desirable radius of the
target with R,. For the environment used in this project, this
reward function failed to converge, but some components
of the function helped design a simpler and more robust
reward function that resulted in the learning of an effective
policy. The novel reward function utilized by our model is:

R, = 1 r—1
r

Where the inverse r and 7 portion of the function re-
ward the agent for steering towards the target. The —1
in the function penalizes the agent missile every time-
step; therefore influencing the agent missile to collide with
the target missile quickly. Additionally, a large positive or
negative reward was given to the agent when successful or
unsuccessful termination states were reached respectively.
The relative weight of inverse r and 7 components were
tuned, as well as the rewards for the failure or success of the
interception.

3.4 Reinforcment Learning Algorithm Utilized

Although the related literature suggested that the DDPG
algorithm would provide desirable policies in this contin-
uous action-state space environment it proved to be un-
successful in this project’s implementation. Initial project
iterations found success with a discrete action space and
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the use of a Deep Q-Network (DQN). However, to handle
the continuous action space, advantage actor critic (A2C)
proved to be a viable solution.

A2C relies on both an actor and a critic network, and can
be thought of as a policy gradient method. Policy gradient
methods can be easily amended to continuous action spaces
as the DNN utilized to output the given action associated
with a provided state can output a probability distribution.
A2C makes use of ideas from REINFORCE in that it updates
the given policy proportional to an advantage, or return in
the case of REINFORCE, in the direction of this return but
inversely proportional to the probability of this return. This
is advantageous as the policy is not superfluously shifted
towards commonly occurring actions that have been biased
with a higher probability. However, unlike REINFORCE,
A2C can perform online and incremental learning as the RL
algorithm can make use of n-step temporal difference learn-
ing through the use of a critic- rather than REINFORCES
Monte Carlo approach. Overall actor-critic approaches can
be best thought of with the one-step advantage actor critic
update [7], [12]:

N N Vﬂ'(At‘Shet)
Or+1 =0+ (Rit1 +y0(St1, w) — 0(St, w)) ~(A11S1,0,)
Here the critic can be thought of as a DNN to approximate
the state-value function ©(S,w) and is parameterized by
the vector w. The advantage can be thought of as the net
gain or loss from taking an action at a state, as such the
parameters, 6, of the policy function 7(A|S, ) are updated
in the direction of increasing this actions probability scaled
by the advantage. The critic is also updated utilizing the
advantage function which adjusts the parameters according
to the received reward at time step ¢, the estimation of the
next states state-value and the estimation of the current
states state-value:

w4+ w4 @(Regq + y0(Spr1,w) — 0(St, w))V(S, w)

Clearly if a higher (or lower) than expected reward is
received the critic will adjust the parameters w to compen-
sate for the discrepancy. This one step A2C can easily be
modified to utilize continual updates via eligibility traces.
Although the use of the critic introduce some bias, more
prevalent in one-step, by relying on the localized estimation
of the critic; this is easily made up for with the reduc-
tion of variance. This variance no longer results due to
the bootstrapping of the critic, computing each advantage
according to the perceived reward and the localized state-
value estimates [12].

4 |IMPLEMENTATION

4.1 Frameworks

The environment was built using the OpenAI Gym frame-
work [2]. A graphical visualizations of the missile trajecto-
ries was built by using Pygame [11] (See appendix). The
A2C algorithm implemented by Stable-Baselines3 [9] was
used to quickly train a variety of RL models.
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4.2 Varying Target Missile Behavior

To thoroughly test the proposed method and explore its
capabilities target missiles were tested of varying types as
described in the table below. A policy for each missile type
was learned independently by using episodes specific to
the target behavior. Each target missile type was trained
for one-million time steps or roughly 3500 episodes. Each
episode the agent missile started in the same position (lower
left portion of the environment) and the target missile was
placed in a random position at the top of the environment.
The target missile’s trajectory was guaranteed to hit within
a certain range of value along the ground. This was done to
prevent the target missile from flying off the screen of the
visual interface.

Target Type | Description

static A stationary target missile. Not realistic,
but was primarily used for prototyping of

the reward function.

dynamic | A moving target missile with the same

velocity every episode.

v_dynamic | A moving target missile with a potentially

different velocity every episode.

noisy A moving target with random alterations
to its velocity angle occurring throughout

the episode. Same velocity every episode.

all A moving target with random alterations
to its velocity angle and potentially differ-
ent velocities every episode.

4.3 Hyperparameters

There were various hyperparameters specific to A2C that
were tuned throughout the project implementation. The
values in the table below proved to be successful, but further
hyperparameter tuning could generate better results. Also,
any hyperparameters not specified were the default values
provided by the Stable-Baselines3 framework [9].

Hyperparameter | Value
Learning Rate 7x107*
Entropy Coefficient | 102
N steps per update | 10°
Discount 0.99

5 RESULTS

Once each policy had been trained for each type of target
missile, the performance of each policy with its respective
missile type was tested. As seen in figure 2, the model was
able to learn a policy which could consistently intercept
target missiles of the types static, dynamic, and noisy. The
model failed to learn desirable policies for the v_dynamic
and all target missile types. Since the velocities potentially
change between episodes, the agent missile fails to learn
a policy which can account for different target missile ve-
locities. Additionally, the agent missile likely struggled to
collide with the target missile because of the target missile’s
velocity being too large. If the maximum velocity of the
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Fig. 2. Number of successful episodes out of 100 for various missile
types.

target missile was decreased, the agent missile might have
shown better performance.

For the noisy target missile, the agent converged on
a policy which would attempt to circle around the target
missile, and then hit it from the rear as seen in figure 3. The
sampled trajectories from the trained policy in this noisy
environment demonstrated the policie’s robust ability to
handle disturbances in the heading of the target missile.
Many real world missile interceptors take this approach;
however, it is unclear if this policy was converged upon
because it optimizes the chance of interception, or if the
environment set up is biased towards this type of trajectory.
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Fig. 3. Trajectory taken by agent missile with a noisy target missile. See
appendix for additional trajectories.

In figure 5, it can be seen that for the noisy target missile
the episode rewards increased as the training progressed.
The policy converged relatively quickly at around episode
1000. For the episode length, a less clear trend is plotted in
figure 4. The episode length on average did decrease, which
shows the agent missile learning to hit the target missile
sooner to maximize rewards. Throughout the plot there are
a few episodes which reached the episode length limit of
1000. This is likely due to the noisy missile’s trajectory being
altered enough that an uncommon observation is provided
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to the agent missile and thus the policy does not perform as
well.
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Fig. 4. Episode lengths as model trained with noisy target missile.
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Fig. 5. Episode rewards as model trained with noisy target missile.

6 DiISCUSSION

When comparing the different target missile types it is clear
that the agent missile struggles to intercept the missiles
which vary in speed each episode. A potential solution
to this issue would be to allow the agent missile to also
control its velocity. The results of implementing this seemed
to show the model needed significantly more training. For
the sake of time, this was not included this in the final
implementation.

Frequently upon convergence, the policy is found to
drive the agent missile toward the target missile in an
opposing direction only to then circle around the target
missile and intercept it from behind. This could be a co-
incidence due to the lower probability of successful head-
on interception but could also be a learned behavior. When
trained with a constant velocity target missile the agent may
have learned to associate which values of 7 are associated
with head-on approach and learned to avoid these opting
for a lower 7 associated reward but a higher probability of a
positive terminal reward. This also can likely be attributed
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to the poor performance of the v_Dynamic environment as
randomizing the target missiles velocity impeded the agents
ability to from associations between the values of 7 and
approach condition.

7 CONCLUSION

The method used proved to be successful with a variety of
target missile types. The novel reward function allowed the
model to learn a policy capable of consistently intercepting
the target missile. Of course the methods used could be
improved. As discussed earlier, adding control of the agent’s
velocity to its action space could yield better results for cer-
tain target types. The lack of physics utilized in the environ-
ment creates a significant reality gap; however, the environ-
ment still showed the agent’s ability to make advantageous
trajectory decisions. Further, other RL algorithms such as
DDPG and A3C could be experimented with in the future.
Work should be done on applying similar techniques in 3-
Dimensional space while preserving the developed nuances
in the reward function; although, this would likely require
far more computational resources and training iterations.
Even with RL, real world missile guidance likely needs
some amount of traditional guidance control. The coupling
of both methodologies could lead to promising results. Even
with some minor shortcomings this project proved to be an
excellent exploration into RL algorithms being applied to a
real world problem.
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APPENDIX
Figures

Fig. 6. Trajectory

Fig. 7. Trajectory
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pygame window

Fig. 8. Pygame Environment

Contributions

Both team members equally contributed to the project in their own respect. Lance can be contributed with developing
the python environment and successfully integrated stable-baselines. Roman aided heavily in the conceptual development
of the MDP and reward function- as well as debugging and confirming that the observation space was appropriately
calculated. The majority of the project was done together in person and was a collaborative effort with both members
benefiting off each other’s experience and opinions.



