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ABSTRACT

Welding can be defined as the joining of two or more materials by means of pressure or heat.

In the last half-century significant interest has risen in the application of robots and collaborative

robots (Cobots) for automated welding. The benefits of robotic welders are that they never tire,

achieving a higher work efficiency than human welders. Further, they achieve more consistent

results- impervious to distractions, operating at a constant speed with a higher precision. How-

ever, robotic solutions can not replicate the decision making process and adaptability of the human

worker. Extensive use of logical operators, replicating the decision process, must be embedded in

the solution.

This overall document introduces the efforts of a year long investigation into the implemen-

tation of an automated welding solution; utilizing a Miller 352 MPa and UR10e based system;

achieving a throughput with a 0.524 cm/s average travel speed for 235.92 cm of weld length over

two separated grids, in a prototype part. With a weld travel speed of 0.6 cm/s this implies that

87% of the time in a tour is spent executing the welds. This project presents a proof of concept,

exploring the difficulties in automating a traditionally manual task. The results also made apparent

the need for improved process control and robust performance of the system.

The outline of the document is as follows, starting with a introduction into the problem and

relevant literature, followed by the methodology of the solution, a review of the current results,

and a discussion about these results, possible improvements, and the future scope of the project.
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NOMENCLATURE

TCP Tool Center Point

gui Graphical User Interface

MIP Mixed Integer Program

LP Linear Program

Cobots Collaborative Robots

HEZ Heat Effective Zone

TSP Travelling Salesman Problem

ICP Iterative Closest Point

ipm inches per minute

cfh cubic feet per hour

RRT Rapidly-exploring Random Trees

⌈x⌉ Round Function for x

Tv specified Tool Vector for TCP frame

n̂ normal, utilized for calculation of orientation and offset

Ov orientation vector

Θd n-dimensional desired joint value array

V, Vweldnodes set of all nodes or weld nodes for a given graph

X set of all possible path decision variables between every weld
node

Xn,m set of path decision variables between weld node n and m

E,Ew set of graph edges
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en generic path or edges between two weld nodes, containing
intermediate nodes

sn safety point associated with point n

Dw set of all desired weld lines

dw given weld line

Ta total angle change associated with a weld line or trajectory
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Robotic Welding has been in development since the inception of industrial robotic automa-

tion. Recent scientific and social shifts have introduced a new paradigm in this technology. This

includes applying collaborative or co-robotic (cobot) solutions to small manufacturers, mitigating

skilled labor shortages and improving industrial productivity.

Robotics presents an advantage over traditional skilled labor because it is consistent and ef-

ficient. A robot can replicate trajectories at a given velocity with greater precision and accuracy.

This results in consistent weld quality; reducing cost of material waste associated with human

error. Full industrial robotic automation also removes the human element from the welding op-

eration, reducing the risk of injury. However, some manufacturers that do not have the means to

implement a high level of industrial automation may still utilize manual welding. Cobots are safer

compared to industrial robots for hybridized manufacturers. These manufacturers still have a large

amount of labor, but can benefit from the use of automation with cobots; being cheaper and safer

than industrial robots. This is because cobots are designed to work closely and safely with and

around human operators.

To implement robotic welding, it is necessary to identify its challenges and limits. Robots

are not intuitive, and cannot reason like a human; they can only make decisions based on pro-

grammable logic and provided information. The decisions of the robot are based around a set of

provided orientations and positions. The goal being that these positions and orientations map the

robot to the location of the desired workpiece and welds. For ease of use, a geometric model is

placed at a given transformation in the workspace. The desired welds are identified relative to the

part origin and mapped to the robots workspace; with these welds selected by the user.

Registration of the work-piece is the act of taking the position data of the physical part in the

robots workspace to estimate its relative position and orientation. This position data is often ac-
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quired with use of the robotic linkage, through either a sensor or user input. Sensors or vision

based systems are difficult to implement, driving up cost and complexity. Cobotic welding solu-

tions make use of the weld gun as a pointer to a registered position. The user positions a dedicated

weld tip to gather accurate and precise position information of the physical part.

This registered position data, regardless of acquisition means, has associated errors that must

be confined by the part matching algorithm such that, the estimated transformation results in ap-

propriate weld locations. This error is also related to the amount of registered points and the space

in which they occupy, requiring intelligent selection.

To move from weld to weld, the robot must be provided with a path between these points, in

the order they are to be performed. These paths must be sufficiently smooth, such that any robotic

trajectory along the path results in a continuous motion with minimal jerk. Parametric splines or

polynomials can be fit to a given set of control points and constrained to be continuous up to a

given degree. These control points must contain both point and orientation information to guide

the Tool Center Point (TCP) from weld to weld and along each weld, to correctly deposit the weld

material. The required orientation of these welds should be determined via the part geometry and

user identification of weld lines in the part geometry. Given the size and geometry of a weld piece

and its transformation, it is imperative that the paths guide the robot along a collision-free trajec-

tory. Significant work has been done on these path finding methods, but all require the ability to

check and eliminate points for collision avoidance.

The set of collision-free paths allows the robot to map its set of joint angles to the position and

orientation data at discrete path points, spaced out in time. The overall jerk of the robot depends

on the instantaneous change in joint angle acceleration along these path points. It is desirable that

the robot smoothly accelerates through a joint angle solution set of a given path. As there are mul-

tiple joint angle solutions to a given point and orientation it is important that the solutions along

a given path belong to the same joint angle subset: that is not an altered geometric solution. The

geometric solutions along the path must position each link to avoid self or part collision. Multiple

joint angle solutions can exist for an identical geometric solution dependent on the acceptable joint
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angle range and must be filtered to avoid instantaneous joint angle changes of 2π.

The order in which the welds are visited plays an important role in the performance advantage

of the automated process over the manual; but the effect of this performance advantage may vary.

Most robotic solutions employ some form of predetermined traveling salesman problem (TSP) or

online decision process to order point and orientation targets given a set of goals. A part with more

welds will gain more competitive advantage from solving the optimal order of the welds compared

to a smaller part, given a limited computation time, as this represents a fixed cost to the travel time

associated with completing the part. This also involves the decision whether a method of selecting

the next weld sequentially after each completed weld out competes that of a predetermined order

requiring an initial solution time, and under what circumstances.

Weld parameters are selected by manual laborers through experience and knowledge based on

material, thickness and weld geometry in a test and validation method. If the robot is to perform

quality welds it is important that the given weld parameters are appropriately selected for a given

work piece. The most common of which are wire feed rate and voltage. These parameters should

be remotely controlled, with the weld equipment matching the desired values. Additionally the

remote welder must utilize appropriate filler material, filler wire diameter, and gas supply for the

weld piece. This welder should be easily integrated into the overarching cobotic system and hard-

ware.

Over the past year work has been done to facilitate the development of an experimental appa-

ratus capable of performing robust welds and integrating with a remotely controlled UR10e cobot.

This project presents a proof of concept, exploring the difficulties in automating a traditionally

manual task. The goals being to optimize an ordered set of required tacking points and weld lines,

and solve the trajectory generation, utilizing smooth continuous paths. The weld points have been

ordered with a formulation of a custom mixed integer program and, online next nearest point or

greedy algorithm. The welder utilized is an Invision 352 MPa remote welder with cobot interfacing

from Miller and a Tregaskiss BA1 Weld Gun fixed to the end of the UR10e. The results to date

show the successful implementation of a simplified welding program able to handle planar-linear
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welds. This is contingent upon a given geometric model of the workpiece, proper identification of

weld points and accurate registration of the part in the workspace via positioning of the TCP.
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1.2 Literature Review

Necessary to propose a solution to the problem of automated welding is a review of the relevant

information. This first covers an overview of welding related material science, what contributes to

a quality weld, and an overview of path planning and industrial robotic welding.

1.2.1 Welding Overview

Welding can be classified by being either arc, spot, gas, friction, beam or etc.– with arc welding

being the most prolific in the welding industry. The use of electricity being popular due to its rapid

heating and processing that reduces the overall heat effective zone (HEZ) of the weld piece, with

the size of HEZ inversely proportional to input power [1].

Arc welding utilizes an applied current to generate heat, liquefying a supplied metal deposition

to join two or more metal surfaces. Historically, industrial welding robotics have mainly utilized

spot welding, popular in the automotive industry [2] with the average automobile containing ap-

proximately 5000 spot welds [1]. Spot welding passes a current or arc between two electrodes,

moving through the air and then the target material, joining the separate materials together. In

recent years the use of robotic arc welding has risen drastically. The most common types of arc

welding are known as Metal Inert Gas (MIG) and Tungsten Inert Gas (TIG) seen in figure 1.1.

Additionally an overview of all electrode supplied weld types can be found in figure A.1.

The primary difference between these two is that MIG welding, unlike TIG, uses a consumable

electrode as a filler metal. This makes MIG welding more amendable to robotic welding as the

gun can be designed as a single self contained end effector, whereas TIG may require an additional

apparatus, robotic arm, or even human–robot interactions. Another application of robotic weld-

ing utilizes a laser to join the metal surfaces. This has the advantage of being extremely precise

with respect to the HEZ; unfortunately these systems require significant upfront capital investment

making them infeasible for all but large economies of scale. MIG therefore demonstrates itself as

the front runner for providing smaller manufacturers the ability to automate due to its cost effec-

tiveness and simplicity.
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Figure 1.1: Arc Welding Types with MIG (a) and TIG (b) Reprinted from [1]

A multitude of parameters influence the weld quality, varying for each type of welding. The

Tregaskiss manual for the BA1 reviews possible quality issues and related parameters. For exam-

ple, one common problem is that of contact tip burnback– which is the occurrence of the MIG wire

burning back to the exit tip faster than the wire can be fed. This occurs because the wire itself is

arcing at the contact tip inside the nozzle, welding itself inside the tip [3]. An immediate solution

to this is to increase the wire feed rate, to overcome the rate of burnback. This also depends on

the tension setting of the MIG wire feeder– too high of a tension may create unnecessary strain

on the motor, via the drive rollers and too low will result in improper feeding [4]. The magnitude

of the supplied current affects the possibility of contact tip burnback. Given a higher current it is

recommended to recess the contact tip further into the guns nozzle creating more wire stick out,

defined as the length from the tip of the weld gun to the weld. This moves the arc further away from

the contact tip, reducing its heating and in turn extending its life as the consumables resistance in-

creases proportional to temperature. Recessing the contact tip further also allows an improved gas
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flow [5]. Less recess typically allows the welding of hard–to–reach joints and grooves, but also

runs the risk of arcing the consumables, like the contact tip to the work piece and damaging them.

Other common problems in weld quality include excessive spatter, weld porosity, and improper

weld penetration. Spatter is the scattering of molten metal droplets away from the desired weld

pool, these droplets can cause injury or damage by landing on nearby humans, flammable mate-

rial, or even damaging the consumables in a MIG gun. Weld porosity is unsightly cavities in the

weld that result in lower strength. Welds that have a porosity defect must be redone immediately

and are at risk of collapse [6]. Weld penetration is defined by the depth at which the weld has

infiltrated the material. Too deep can result in significant warping of the material, but a shallow

weld results in joint weakness and an improper bond [7]. Spatter formation can be impacted by

the quality of materials used, if cheaper materials are used with weldable filler metals this will im-

pact spatter. Spatter is also influenced by the voltage and current combination at a particular wire

and gas combination. Parodying Ohms Law, if the voltage is too high or the current too low the

resistance through the weld will be affected and the weld pool and wire won’t be molten, stubbing

the wire to create spatter. Spatter is additionally influenced by parameters: weld angle– geometry

affects gas coverage and heat transfer, arc length– too long of an arc length can cause the metal

droplets to impact the weld pool and create a splash, or loss of shielding gas protecting the weld

pool– which also effects porosity [6]. Porosity is created by the presence of nitrogen, oxygen and

hydrogen around the weld pool; upon cooling these separate and create cavitation, which can cause

spattering. Thus proper shielding gas flow rate, and mixture is important to weld quality and the

avoidance of porosity. Too low of a flow rate will result in improper pool coverage, too high will

create turbulence in the flow inducing mixing of atmospheric air and creating impurities in the

shielding gas. It is important to always check and maintain gas diffusers and lines, to insure the

proper supply. Penetration is directly effected by the heat supplied to the weld pool– depending

on the current and voltage. Tuning all of the parameters to achieve optimal weld performance is

an involved process. Typically one starts with a recommended specification for a type of weld

and then further adjusts based on observation. The optimallity of these parameters will further

7



change between individual welds as each quality control issue is affected by gun travel speed,

weld parameter, surface cleanliness, temperature, and more.

1.2.2 Path and Motion Planning

The Travelling Salesman Problem (TSP)

The Traveling Salesman Problem or TSP has been one of the most important combinatorial

optimization problems in the last century. The problem can be simply stated as: given a set of

cities or points, find the best tour to visit every point once and return to the start, minimizing travel

distance. This corresponds to finding the minimum length element from the set of Hamiltonian cir-

cuits. The TSP has found relevant applications in everything from package delivery, distribution,

network planning, chip design, and robotics [8].

This problem is of special relevance as given the set of weld points, or weld lines; it is desirable

to execute these in the optimal order with consideration to distance or some other cost. Unfortu-

nately this problem has proven to be NP-hard by Karp in 1972, meaning that a TSP problem can

not be solved in polynomial time [8]. What this implies is that a brute force methodology applied

to the TSP will scale exponentially with the cardinality of the input set. This brute force technique

may be obvious and efficient for small sets of points, but the possible permutations of tours will

scale by a factorial of the number of inputs.

Another naive, but feasible, approach to this problem is to employ a greedy algorithm- also

known as the nearest neighbor heuristic. The concept being to take the next point, as that with the

lowest cost metric from the set of remaining points. However, the cost associated with this solution

does not scale by a constant factor with respect to the cardinality [9].

Path Planning

Path planning refers to the identification of collision-free paths between the desired position,

orientation, or joint goals. This can be done by first identifying a set of safe collision-free points

connecting the current point to the desired. Points may be sampled randomly from the environ-

ment, with some beneficial bias, and then repeatedly checked given a conditional specifying if the
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point falls outside of a part geometry; like the RRT* algorithm [10]. Points that fail to exist outside

the bounds of a given part geometry may be eliminated or the algorithm may be constricted to an

acceptable area.

These points may also be found by geometrically processing the work piece. Delaney’s algo-

rithm, that constructs triangles from a set of points such that no non-shared point of another triangle

is inside the circle drawn around any triangle’s vertices, is a possible solution. Random sampling

can be replaced with sampling from a discrete set of safe positions and orientations, constructing

a graph that can be processed by Dijkstra’s or A* [11]. In some cases path planning is performed

by user input, in which a human guides the robot to safe points in the workspace. This process can

be cumbersome and inflexible to variations in work piece parts or environment.

A set of collision-free points is not adequate information to achieve a desired point and orien-

tation. The inverse kinematics (IK) problem must be solved, specifying the required joint angles

to achieve the desired transformation. It is well-known that there exists more than one set of joint

angles to a given position and orientation; for 6 degrees of freedom robotic manipulators, as the

mapping is not injective. Along the collision-free path with specified orientations, care must be

taken to select the corresponding joint angles that provide a smooth motion for each joint. If a joint

has a range of 4π, angles 2π, 0, and −2π are radially identical. Instantaneous change from these

geometrically identical solutions will result in an infinite desired jerk, along a joint angle trajectory.

The result of such is an erratic and unpredictable motion. This is a result of the Newton-Raphson

method utilized to solve the inverse kinematics problem, which will find the a local minimum in

a continuous joint angle space [12]. The found solution must then be post processed to ensure

that the desired joint angles along the trajectory connect, or belong to specific set of joint limits.

Given a set of connecting joint angles, a smooth function must be found that accelerates the robot

from its current position, towards the desired position and orientation, and decelerates settling into

the desired configuration. Usually a piecewise continuous function, or regression in the form of

splines and polynomials are fit to a desired joint angle trajectory, with constraints that the initial

and final acceleration and velocity are zero.
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1.2.3 Current Solutions

Although co-robotic welding is an emerging industry, there are current companies developing

new implementations, even utilizing the same Universal Robot family. One such example of this is

Hirebotics, who developed an integrated UR10e welding system [13]. A client, Vortex Companies,

reported that the use of Hirebotic’s cobot welder reduced weld times for parts that previously took

an hour by hand, to around 12 minutes; a significant increase in throughput. This system however,

does not have an ability to interpret parts or CAD files. Instead the robot is trained by personnel,

to reuse registered welds taken by using two buttons on the welding end effector; one to move the

robot freely and another to log points. Vortex Companies responded well to the simplicity of the

system, being intuitive and programmable from a smart phone app. The system falls short in its

reliance on repeatability of weld programs, they rely on jigs or clamps in the workspace to repeat

identical welds for a trained program. This implementation, utilized the UR10e and a nearly iden-

tical Tregasskiss’ weld gun.

Another example, of robotic welding is the optional solutions from Path Robotics [14]. Devel-

oping multiple innovative robotic welding solutions capable of intelligent path planning centered

around provided part geometries. The AF1 employs three independent robotic manipulators. Two

Universal Robots’ manipulators position weld parts, picked from nearby bins, that are then welded

with a Yaskawa manipulator fit with a Miller Auto Continuum 500 to weld. Capable of handling

disorganized parts from the bin with variable tolerances, the solution reads and adapts its weld pa-

rameters based on sensor input. A laser based system embedded in the Yaskawa’s weld gun aligns

welds on-live for accurate weld positioning and parameter selection. The solution also makes use

of a rotating fixture table to position the desired work piece adding an additional degree of free-

dom to the system. In-fact, Path Robotics have made use of gyroscopic fixture tables in welding

solutions [15]. Rotating a table to assist the welder around a circumference of a curved surface.

The implementation being a premium is sold as a subscription.
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2. SOLUTION METHODOLOGY FOR ROBOTIC AUTOMATION OF

WELDING

The Solution Methodology aims to outline the techniques and equipment utilized in the imple-

mentation. First the experimental set up is outlined, followed by the safe path generation around a

given part geometry, the generation of joint angle trajectories for these paths, and the ordering of

these paths corresponding with a TSP solution.

2.1 Experimental Setup

The Experimental setup of the robotic welder included a UR10e Cobot pictured in figure 2.1

and a Miller remote welding system based around Miller’s Invision 352 MPa MIG welder, re-

sponsible for managing the power supply, and the Insight Core Module 14-Pin responsible for

communicating with the central computer. These integrate with the 74 Series MPa Drive Assem-

bly and the S-74 MPa Control Box that facilitate feeding the required welding wire and gas to

Tregaskiss’ BA1 Cobot Air-Cooled MIG Gun.

This setup utilized 0.035 inch diameter mild steel wire as its filler material and electrode;

with the flexibility to weld material with variable thickness from 1.2 mm to 12.7 mm [16]. The

welder made use of two weld modes, pulsed and standard spray MIG, the difference between these

being that spray has a constant current supply, creating a stream of molten filler metal, and pulsed

MIG modulates its current to deposit the filler metal in individual droplets. Pulsed MIG shows

improvements in the HEZ and weld quality becoming the default operation mode for the project.

The acquired welder also offers control over wire feed rate, voltage or arc length and lead in/out

ramps to gradually increase/decrease voltage, current or feed rate at the start/end of a triggered

weld.
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Figure 2.1: UR10e with Tregaskiss BA1 MIG Welding Gun Attachment

Figure 2.2: Miller MIG System
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2.1.1 External Control

The Automated Welding system provided by Miller is designed to be controlled directly from

the UR10e’s control box, wiring the Insight Module’s inputs and outputs directly to the robot. This

allows the programming via the pendant; this however is less flexible than external control via the

Linux based ROS sudo-operating system used. Although ROS allows easy integration of robotic

systems such as sensors, motors, drivers and higher level planners; it is reliant on the functionality

from previous developers, occasionally being depreciated. Because of this it was convenient to

control the welder from a custom built Arduino circuit that operates as a independent ROS node.

The design of this control circuit was selected by probing the Insight Core Module, otherwise

known as the control module. An image of the provided connection information can be seen in

figure B.2. Note the ’JOG SOURCE’ and ’JOG COMMAND’, shorting these wires resulted in a

forward jog of the wire feeder, extruding the wire out of the tip of the weld gun. This functionality

was then supplemented with an Arduino controlled relay, powered by an independent 12 volt sup-

ply. The ’PURGE COMMAND’, ’MODE COMMAND’ and ’WELD ENABLE’ were identically

controlled with the purge command opening the gas line to the welding tip and ’WELD ENABLE’

turning on the welder, which includes enabling voltage, current, gas flow, and feeding the wire.

Then control was implemented for the voltage and wire feeder commands; shorting the wires for

each of these resulted in a maxing out of the parameter, being Wire Feed Rate, or Voltage/Arc

Length depending on the welding mode. Rather than utilizing a digitally controlled potentiometer,

a variable voltage supply was controlled by the Arduino to surpass the provided voltage with a bias

and achieve direct control.

With this in place the Arduino could then be programmed as an external ROS node subscribing

to topics such as ’enable-weld’, ’voltage’, ’purge’, etc. published via a Python script. The welder

also outputs additional feedback parameters with the potential to be used for live parameter adjust-

ments of the welder. These signals ranging from 0-10 Volts are not compatible with the 5 volt limit

of the Arduino but could be adjusted with a voltage divider circuit. This was not implemented,

being unnecessary for the initial proof of concept and parameter prototyping. A simplified electric

13



Figure 2.3: UR10e with BA1 Weld Gun with Work-Piece

communication diagram can be found for the Arduino controller in figure 2.4.
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Figure 2.4: Arduino Communication Diagram

Figure 2.5: Miller Provided System Diagram
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2.1.2 Part Matching and Weld Selection

Part Matching is necessary for the estimation of the work piece location to communicate the

desired location of each weld point with the registration of user selected points on a geometric

model of the part. Both the desired points to weld or tack and the points to match the model are

selected by user input with the PyVista module, as in figures 2.7 and 2.8.

Given a set of selected points to match with in the digital twin the UR10e is switched into free

drive mode. This allows the user to move the end effector by hand positioning the TCP in the

digital points corresponding location in the work place. At each of these points an input from the

computer terminal, as in figure 2.9, is used to trigger collection of the coordinate data of each point

and input into an Iterative Closest Point (ICP) algorithm responsible for making the best possible

estimation of the parts physical location [17].

Currently there exists no extended intelligence of the program to deterministically pick points

that will lock the part into place; it has been demonstrated that the order the measured points are

read in affects the accuracy of the ICP’s results. For example, given a group of desired matching

points selected from the digital part that all lie in the same plane; if these points are selected

in a clockwise order and the read points from the physical workspace are sampled in a counter

clockwise order the resulting transformation will be flipped upside down 180◦ from the desired

transformation about the x or y–axis of the part frame.

To remedy this the user must understand to either read the points in the order matching the

selection of points on the digital twin, or avoid rotational symmetry in the selection forcing the

orientation to be correct given a read vertical point outside the plane of the other points– i.e. the set

of vectors from all the possible combinations of the matching points must map to three dimensions.

The Registration of the points is done with the welding end effector equipped with a custom

tip that facilities accurate point measurement with a tapered cone shown in figure 2.6.

Because this tool is a different length when compared to the nominal welding tip, this must be

adjusted for within the program via a transformation along the tips orientation vector.

In fact, the entire program is heavily reliant on the precise estimation of the Tool Center Point
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(a) Measurement tip

(b) Measurement tip in the BA1

Figure 2.6: Measurement Hardware
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(TCP) that facilitates the point matching or welding. As witnessed in the development of the

experimental apparatus, small errors in the TCP’s estimation can result in carried error throughout

the entire tacking and welding process. This was only evident due to the repeatability of these

errors; being discovered by taking an array of points at variable orientations and revisiting them

in a repeated orientation. If this repeated orientation was near the orientation of the read point the

relative error from the physical TCP to the point was minimized; as these orientations diverged the

error became a combination of the axis’ displacement between the physical TCP and the estimated

TCP in the digital model.

The culprit of this error being the differences between the quoted dimensions of the BA1 Weld

Gun and the actual. This was resolved utilizing the onboard TCP estimation feature of the UR10e in

which the user sets the tool tip in a constant location, a drilled hole, while varying the orientation of

the robot. Each orientation is then noted and the pendent utilizes this to calculate a best estimation

for the TCP. This is likely done through a form of triangulation, linking the read points of the

current TSP point together and finding its average to estimate the novel.

During the point registration process, the robot is operated in free drive with the available

button on the BA1 that has been programmed to enable the human operator to freely guide the tool

tip to the desired point for registration. The allowable movement of the free drive can be restricted

in a number of ways via programming with the UR10e Pendent and in this case the frame of the

end effector is constrained such that it is always parallel with the negative of the global z-axis; this

corresponds to the weld gun pointing directly downwards to weld on the surface of planar parts.

Although this alignment with the z-axis may not be desirable in every general weld case, most parts

can be welded adequately with this decrease in orientation freedom. The original TCP can be found

in figure B.3. The offset from the flange was provided as (0, 0, 350) mm, the measured TCP was

(-2.34,-5.5,341.70) mm; representing a total error magnitude of 10.2282 mm, or a 10.2282
350

= 2.92%

error. The visually observed error can be seen in figure A.11.
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Figure 2.7: Before and After Selection of Weld Lines

Figure 2.8: Before and After Selection of Part Points for Orientation Matching

Figure 2.9: Terminal User Input to Register Matching Points
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2.1.3 Prototype Test Part

The part in figure 2.11 represents the minimal interpretation of the part shown in figure 2.10,

which was a mock part of a common bottle neck for a local gas transport trailer manufacturer. The

prototype part is a significant reduction in material cost.

Figure 2.10: Exosent Lattice Grid Model
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Figure 2.11: Prototype Part: a minimalist representation of the Exosent part

2.2 Path Generation

Path generation relies on the user to properly identify the desired weld and tack points. These

are passed through the transformation provided by the ICP algorithm to represent them in the

robots workspace. Then PyVista, a mesh handling Python module, is utilized to calculate surface

normals on the mesh relative to the pre-transformed weld and tack points [18]. These surface

normals were originally utilized to generate obstacle avoiding paths from point-to-point, but also

correspond to the desired orientations. Path generation is done with the assumption that there is a

universal height that offers clearance over the part as a whole. This clearance height is taken from

reading the mesh dimensions via PyVista and multiplying by a safety factor. A comprehensive

overview of the current method is given below.
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2.2.1 Normal Generation

The normal generation is done at each desired point by summing the coincident plane’s surface

normals.

Figure 2.12: PyVista Calculated Surface Normal for Point 0

This normal calculation often returned a negative value in the vertical (z-axis) direction. This

was manually overridden by setting the z component to be positive, then the vector was normalized

by equally scaling the x-y and z components and dividing by the norm. Resulting in the vector

shown in figure 2.13.

Figure 2.13: Scaled Normal Unit Vector
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This normal, calculated via the point in the original mesh, may also be passed through the 3x3

rotation matrix in the calculated ICP transform. This normal is stored with the associated desired

point, utilizing both to calculate a point above the vertical height of the part for safe transition or

the desired orientation as discussed in section 2.3.3.

Smooth Paths were generated with splines implemented from the SciPy Python module [19].

These relied on an array of control points between both points in the Point-to-Point motion, weights

designating the relative importance of passing through each point in the array, and a smoothness

coefficient controlling the degree to which the spline differs from control points to achieve contin-

uous low magnitude derivatives. To achieve precision and enforce continuity between consecutive

paths, the weights of the start and end points are scaled several magnitudes larger than the inter-

mediary; forcing this spline equation to closely approximate these points.

2.2.2 Multi-Movement Planar Point-to-Point Path Generation

The weld program utilized straight line paths and a single height scaling plane directly above

each desired tack or weld point. The robot moves between desired points by first lifting directly

upwards and then translating directly above the next point in the raised x-y safety plane; followed

by directly dropping down to this point in the orientation corresponding to the normal of that point.

Robot Trajectories following these paths are shown in figure 2.18.

Additionally the trajectories must be generated for the associated weld paths of the part and are

reliant on an python object that stores the necessary weld information associated with desired weld

turns, oscillations etc.. This path is made relative to the identified weld line points, dependent on a

control distance, safety distance, and normals at the start and finish of the weld.

Along the weld line the end effector or tip of the weld gun is maintained at a constant distance

from the weld on the work piece itself; regardless of the orientations orthogonality to the weld line

itself. This is to ensure that the influence from change of gas flow, arch length and other distance–

influenced weld parameters are diminished. The variation of the orientation from start to finish is

calculated via the normals of each point on the mesh and is so that the robot turns to get into the

tight corners of common parts. As the robot turns the shortest distance from the tip itself to the
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(a) Vertical trail

(b) Horizontal reorientation trail

Figure 2.14: Standard Point to Point Movements
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Figure 2.15: Coordinate Frames of TCP and Base Link

plane of welded wall reduces; being that length along the wire feeds vector is held constant. Figure

2.16 shows how this control distance relates to both the height and length of the TCP relative to

the points the weld line is based off. Figure 2.15 also represents how the TCP frame is related to

the base frame of the robot.

This can also be represented in equation form relative to the global coordinates with:

p1 = [R1
0] n̂(CD) + p0.

Here p1 is the resulting TCP calculated by adding the normal vector scaled by the control distance

and transformed by the representation of the part orientation in the workspace to the location of

the part point p0 in global coordinates.

The safety distance, not to be confused with control distance, influences the spacing over which

the end effector rotates into a nominal orientation based on the direction of travel of the weld gun.

All of the desired rotations apart from the nominal are linearly spaced out in a start and end section

along the weld path with a length equal to the safety distance. This is to ensure the arm rotates into

25



Figure 2.16: Control Distance Defined from the TCP to the Weld Piece

place before entering the corner of the desired weld. Further, given a longer weld, this allows the

gun to travel in an optimized orientation for the quality of the weld. This may however result in

trajectory issues down the road dependent on the overall timing of the robot along these paths.

2.2.3 Weld Line Paths

The planning for the weld line paths is handled by an individual Python object, storing and

processing the associated data required to direct the robot along a desired weld path. This begins

with the normals at the start and end of the trajectory,

n̂1, n̂2 ∈ R3

and each desired weld point.

p1, p2 ∈ R3

The line vector is then:

v⃗l = p2 − p1.
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Given a safety distance from the corners ds and a interpolation resolution ρ, take the number of

rotating points, rpn, as a rounded integer based on the length of the line vector and safety distance:

rpn = ⌈ρ ds
|v⃗l|

⌉, rpn ∈ Z+.

Then take the sign Sz,

[k1, k2, k3] = n̂1 × n̂2,

Sz = sgn(k3).

The weld angles can then be spaced out by the interpolation resolution ρ and rpn, taking three

arrays to linearly space the corner to corner trajectory. This consists of the initial turn out of the

weld corner, the portion of travel such that the y-axis of the TCP frame is perpendicular to the

line vector, and then the turn into the corner. This is represented to the robot with linearly spaced

points along each array, the total points in each array is proportional to the ratio of its length over

the total weld length; with the first rotation having rp0 = rpn, the perpendicular portion having

lp1 = ρ−2∗ rpn, and the last rotation having rp2 = rpn indexes in the array. With the weld points

spaced out as:

Ωv = [ω0, ω1, ω2]

s.t.

ω0 := [p1, ... , p1 + v⃗1(
rp0
ρ

) : ∀n ∈ {rp0}],

ω1 := [p1 + v⃗1(
rp0 + 1

ρ
), ... , p1 + v⃗1(

rp0 + lp1
ρ

) : ∀n ∈ {lp1}],

ω2 := [p1 + v⃗1(
rp0 + lp1

ρ
, ... , p2 : ∀n ∈ {rp2}].

Each of these position arrays are then coupled with a desired angle-orientation array, utilizing

the sign Sz, corresponding to the direction of angle change, related to the weld direction of travel-
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not the actual joint angle 1:

B = [β0, β1, β2]

β0 = [0, ... , (Sz)
π

4
, ∀n ∈ {rp0}]

β1 = [(Sz)
π

4
, ... , (Sz)

π

4
: ∀n ∈ {lp1}]

β2 = [(Sz)
π

4
, ... , Sz)

π

2
: ∀n ∈ {rp2}]

Orientation vectors, and points adjusted by the control distance (CD) are specified for every angle

and point pair at a shared index.

Ry(θ) :=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


The normal associated with each desired orientation is then defined as:

n̂d = Ry(θ)n̂1

and the desired point for the TCP is:

pd = pn + (CD)n̂d

∀θ ∈ B,ω ∈ Ωv.

Each normal n̂d and point pd is then utilized in solving the IK problem storing the associated weld

angles along the path.

1This weld angle implementation is built around the assumption of an orthogonal grids normals
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Figure 2.17: Spline Pathway for Weld Line

2.3 Robotic Trajectory Generation

To follow desired paths a robotic trajectory must be computed and timed along each path. This

involves solving the Inverse Kinematics (IK) that provide joint angles required to achieve a given

point and orientation. Further these solutions must smoothly connect with each other along the

path, and not break the required joint limits of the robot. This is done by specifying the joint limits

to the IK Solver ensuring the joint angle solution exists within a certain subset of the joint angle

space which can be referred to as a configuration type. Staying in this subset reduces or completely

avoids instantaneous jumps in joint angle values along the path.

2.3.1 Joint Limits

Multiple geometric solutions can produce the same end effector position and orientation. In

graphic (b) of figure 2.18 an identical vector from 1 to 3 can be replicated by reflecting the vectors

along the joint links across the axis of the vector; the q3 angle will then identically level the end

effector. Further, ignoring the position, a final orientation assuming previous joint angles can be
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(a) Base link rotation

(b) Planar positioning

(c) End effector orientation

Figure 2.18: Visual Simplification of Rotational Transforms
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accomplished with multiple combinations of the yaw, pitch and roll represented in graphic (c).

Given how this orientation is constructed it constrains the possible solutions of the horizontal

vector which locates the vertical plane that adjusts the height and length of the end effector as in

(b). Additionally to these multiple geometric solutions, there exist duplicates of each due to the

standard joint limits of the UR10e being +/-360◦, creating 3 values for an absolute angle of 0◦ and

2 for every other. It would be hazardous if the connected IK solutions of the desired paths were

to jump from either geometric class or any of the multiple values that create an identical absolute

angle.

For the convenience of this solution the robot was constrained sequentially along each joint:

q0 = {θ0 : 2π ≤ θ0 ≤ π}.

joint 0 is allowed its full range of 720◦. Although IK solutions may have multiple solutions this

is handled with rounding by integer values of π. The work piece to be welded is set upon a work

table, because of this it is desirable that the 2nd joint, q1, does not dip below the plane of the table,

the joint angle should be constrained such that this occurs. This is done relative to the initial angle

of the joint, set between 0◦ and −180◦. To avoid dropping below the coincident plane with the

shoulder link the joint limits are set as:

q1 = {θ1 : −π ≤ θ1 ≤ 0}.

A value of 0◦ for q2 corresponds with the link being aligned with the previous link after the

shoulder lift joint, q1. As a solution in the positive quadrant of q2 can be replicated with a 180◦

rotation about q0 and converting q1 by subtracting its value from −180◦ (q1 = −π − θ1), and a

negation of the sign for q2 (q2 = −θ2). To avoid this quadrant flipping, in which the robot will

reconfigure itself for a geometrically identical solution, q2 is limited based on its initial value,
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Figure 2.19: Wrist Zero Configuration (q5 = q4 = q3 = 0◦)

which lies between positive and negative 180◦ given the assembly of the current UR10e.

q2 = {θ2 : 0 ≤ θ2 ≤ π}, ∀q2i ≤ 0

q2 = {θ2 : −π ≤ θ2 ≤ 0}, ∀q2i > 0

This can be referred as either a positive or negative elbow joint. Figure 2.19 shows the final three

joints of the wrists in the zero configuration where each joint angle is set to zero.

Figure 2.20 represents what are classified as the long and short configuration types. Assuming

as was outlined in the point registration that the z-axis of the end-effector or TCP frame always

remains parallel to the global z-axis; q4 will always remain integer values of π
2

and q3, based on

the configuration type, countering the induced orientation created by the previous joint angles to

level and align the frame with the z-axis. In fact, a precise geometric relation could be written out

for this angle. q3 is then limited to a range of 180◦ based on its initial value, corresponding to the

configuration type. First, the initial value of q3 is divided by π and rounded both up and down to

create upper and lower bounds θu and θl where:

θu, θl ∈ {Θ : Θ = π × Z},

q3 = {θ3 : θl ≤ θ3 ≤ θu}.
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(a) Short Configuration

(b) Long Configuration

Figure 2.20: End Effector Configurations
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In initial program design both the long and short configuration types were tested to see if the

IK solver could find solutions for each at closest and farthest point of the desired tack/weld points.

It was then designed to opt for its current configuration (of which most times was physically long)

and if a solution was found for both points remained in this configuration. If this solution could

not be found it tried to find both solutions for a short configuration– which upon failing would quit

the program. If found the IK solver would only find solutions for this configuration and the robot

would have to transition to this on its own accord. However, the long configuration is superior in

that there is a reduced risk of self collision and it can reach further distances, allowing the robot

to operate further from the singularity at its base. Because of this the robot defaults to whatever

configuration it reads from the joint angles of the physical robot when the program is run. Finally

the end effector’s limits are implemented for q5. This was not initially done as early trials showed

it possible for wrist 3 to travel its whole 720◦ without failure– later tests showed that the cord

leading to the BA1 weld gun could occasionally be caught on the wrists of the robot and create a

resisting torque that would cause the robot to fail. Wrist 3 of the robot was then centered about 0◦

and rotated in both directions until contacted was achieved between the wire feeding cable and the

wrists; resulting in q5 joint limits of:

q5 = {θ5 : −226.62◦ ≤ θ5 ≤ 237.65◦}.

With a total allowable wrist range of 464.27◦. Fortunately this range is nearly centered around 0◦

and has an additional 104◦ of rotation over 360◦ allowing approximately 52◦ additional degrees of

overlap in either direction. This is of significant concern to the initial design of the program being

able to handle these novel joint limits; less than a full rotation of travel would force limitations on

the robot’s ability to do weld lines in either one pass without resetting its configuration, depending

on the severity of these restrictions it may impose that the robot has to flip from a positive elbow

joint to a negative– an act that requires a significant amount of time/space. Performance not only

depends on these joint limits but how these joint limits relate to the orientation and position of the
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work piece. Rotation of this piece may cause some desired weld lines to be infeasible as the joint

angle solutions are varied possibly violating the joint limits and requiring a reset. Fortuitously, this

was not an issue in the overall experimentation.

2.3.2 Inverse Kinematics Solver

The IK solver was not implemented by the research group itself; this is because the UR10e is

a well known geometry for which moveit and other robotics libraries have developed optimized

solvers [20]. Utilized for this was the TRAC-IK solver from Traclabs [21]. Traclabs mentions that

this is an expansion of Orocos’ KDL (Kinematics and Dynamics Library) employing Newton’s

method to find the solution. Mentioned is that Newton’s method can’t strictly find solutions within

a set of required joint limits. So instead, Traclabs quotes[22]:

TRAC-IK concurrently runs two IK implementations. One is a simple extension to

KDLs Newton-based convergence algorithm that detects and mitigates local minima

due to joint limits by random jumps. The second is an SQP (Sequential Quadratic

Programming) nonlinear optimization approach which uses quasi-Newton methods

that better handle joint limits. By default, the IK search returns immediately when

either of these algorithms converges to an answer.

In implementation TRAC-IK operates as a class that accepts a desired orientation represented as a

quaternion, a position vector, and an initial joint angle guess seed, where the algorithm will begin

the search.

Throughout the program this seed state is fed as either the robot’s current joint angles, or if

computing along a given path the solution to the last point and orientation’s joint angles. Regardless

of this, some errors do still occur in the sequencing of these joint angle solutions as it may cause

joint angles to leap from one extreme to another of a joint limit, another reason additional clearance

on the end effector’s joint limits is so beneficial. Typically, although it depends on the type of

movement, the wrists at the end effector are more at risk of this as they are directly responsible

for major angle changes that produce various orientations; while the previous angles tend to move
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slowly through joint angle space as each acts through an extended lever arm.

2.3.3 Normals to Orientations

The desired orientation is calculated at each desired weld, or tack point, with the normal at

that point determining the orientation and the robot interpolating along paths between these ori-

entations, either linearly or as described in the weld path. This computation involves converting

the desired rotation matrix to a quaternion– the rotational input. A given normal consists of both a

vertical and horizontal component, as it determines location of the 45◦ BA1 weld gun to align the

exiting wire. However, only the horizontal component is utilized in calculation of the desired ori-

entation of these planar welds. This is done with taking the cross product between the designated

tool vector, and the desired tool vector. Given a normal in the described orientation:

n̂ = [nx, ny, nz],

and a aligned tool vector of:

Tv = [0, 1, 0].

The desired orientation vector equals:

Ov = [Ox, Oy, 0],

where:

Ox = −nx, Oy = −ny.

Then:

k = Tv ×Ov = [0, 0,−Ox]

θ = cos (
Tv ·Ov

|Tv||Ov|
)

with:

R1 = Ry(π)
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and:

∀k̂ ̸= [0, 0, 0],

k̂ =
k

|k|
,

with the vector, angle representation of a rotation matrix known as the Rodrigues formula [12]:

Rot(k̂, θ) = e[k̂]θ = I + sin(θ)[k̂] + (1− cos(θ))[k̂]2.

Then:

RO = Rot(k̂, θ)R1.

This defines the orientation of the tool relative to the global coordinate system by first rotating to

align the ŷ tool vector with the given orientation and then spinning about this vector by π. This

transformation expresses points in the TCP frame relative to the base frame:

pb = ROpTCP .

Transforming a given vector in the tool frame to the base frame. However, cases arise when k̂ is

a zero vector as this corresponds to either the tool vector aligning with the base y-axis or being

rotated 180◦ from it. This is mitigated as follows:

if,

k̂ = [0, 0, 0]

and,

|θ| ≈ 180◦

then, it is assumed that the robot is operating in a x-y plane with the z-axis of the TCP frame

orientated along the negative z-axis of the part transformation. This rotation can be taken with:

k̂ = [0, 0,+/− 1],
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as this vector is rotating about the global z-axis by 180◦ the sign on this vector is superfluous.

Then, RO is identical as the previous description. If however:

|θ| ≈ 0◦

then RO is simply taken as:

RO = R1.

2.3.4 Sigmoid Curves, B-splines, and Polynomial Interpolation

Sigmoid curves were utilized to time the trajectory, this was done by specifying a desired time

span, joint velocity, or Cartesian velocity. The utilized function was of the form:

f(t) =
1

1 + e−b(2t−c)
,

with c = 1:

f(t) =
1

1 + e−b(2t−1)
.

The corresponding function for a varied b can be seen in figure 2.21.

As b increases the curve remains more level within the 0 to 1 interval it is centered over. This

is more desirable for timing a robotic trajectory as it implies the robot begins with a near zero

velocity and acceleration, that smoothly accelerates across the timing of the trajectory. However,

this infinitesimal curve does not necessarily map to the inclusive range 0 to 1 across its 0 to 1

domain. Thus, a methodology of weighted averages is used to interpolate along the discrete joint

angle solutions and scale these with respect to the curve and desired time span. Given a desired

time span ∆t and a change in joint angles defined by the difference 2 from the starting and end

2As described in section 2.4, this difference or cost can be scaled relative to each joint angle change with ∆θi :=
∥(θ⃗i+1 − θ⃗i) · S⃗j∥
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Figure 2.21: Sigmoid Function with b Varied from 1 to 32

point (this is also summed between every point in a trajectory for more complex paths):

∆(θ) =
i=n−1∑
i=0

√
(θ0i+1 − θ0i)2 + ...+ (θ5i+1 − θ5i)2

or with i = 0

∆(θ) =
√

(θ0n − θ0i)2 + ...+ (θ0n − θ5i)2,

where n is the number of joint angle points in the trajectory. Then the average joint velocity

magnitude can be calculated as:

θ̇ =
∆(θ)

∆t
.

Alternatively a time duration can be calculated with a desired joint velocity magnitude:

∆t =
∆(θ)

θ̇
.
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Or if taking the Cartesian distance:

∆(d) =
i=n−1∑
i=0

√
(dxi+1 − dxi)2 + (dyi+1 − dyi)2 + (dzi+1 − dzi)2

or with i = 0

∆(d) =
√
(dxn − dxi)2 + (dzn − dzi)2 + (dzn − dzi)2.

Then given a desired Cartesian velocity magnitude, v, the desired time duration can be calculated

as:

∆t =
∆(d)

v
.

Each of these alternatives are accessible in the program. But currently re-orientation movements to

get above desired weld and tack points are performed with a desired average joint angle velocity–

weld lines being critical that the speed matches a selected travel speed are performed with a Carte-

sian velocity and are integrated to accurately capture the path length.

For most trajectories that are not important to time in a Cartesian respect, it is preferred to

use the joint timing method as the Cartesian method can return a path distance of zero for a pure

reorientation, forcing the robot to jump instantaneously to these joint angles. Changes in both re-

orientation and position are always captured in joint space.

With the desired time span either calculated or known the joint angles are timed with a Sigmoid

curve for a selected b value. First the total change in height is calculated for the curve across the 0

to 1 domain:

∆(f(t)) = f(t = 1)− f(t = 0).

Then this is utilized with the desired time span to create weighted averages for each of the n joint

arrays. First an array of points is linearly spaced from 0 to 1:

t = [0, .., 1],
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at each of these points a ratio is calculated with respect to the total height of the Sigmoid curve:

α =
f(t)− f(0)

∆(f(t))
.

To find the indexes for the weighted average:

iaverage = αn.

This value is then rounded up and down to produce an interval, call these new indexes upper iu

and lower il. The associated joint angles at each of these are pulled via the index to produce

θiu = [θ0, θ1, θ2, θ3, θ4, θ5] and θil = [θ0, θ1, θ2, θ3, θ4, θ5]. Then the change in these joint angles

along this interval is calculated as:

∆θ = θiu − θil .

Then the joint angles at iaverage are:

θ(iaverage) = θil +∆θ(
iaverage − il

iu − il
).

The index iaverage, at which this occurs is then scaled by the desired time span:

t = iaverage∆t.

A plot of these joint angles against the scaled time is shown in 2.22.
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Figure 2.22: Sigmoid Joint Angle Solutions with b=7 and θ̇ =
π
4

s
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Figure 2.23: Sigmoid Joint Angle Solutions with b=10 and θ̇ =
π
5

s
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Figure 2.24: Weld Angles Fit to Sigmoid Function with b=3
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Once the joint angles have been scaled with time, it is possible to directly pass this joint trajec-

tory to the robot; but a useful procedure is to fit a set of polynomials to the sigmoid time and joint

angle array’s, as described in A.5. Results to this are shown in 2.25.
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Figure 2.25: Polynomial Solutions for Timed Joint Angles
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Figure 2.26: Generated Trajectory Spline Fit Drop Down to a Desired Weld Point
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Figure 2.27: Generated Trajectory Spline Fit X-Y Plane Reorientation
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Figure 2.28: Generated Trajectory Spline Fit Lift Up End Effector
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Figure 2.29: Generated Weld Trajectory Spline Fit
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2.3.4.1 B-Spline Application to Joint Angles

Given the final set of desired joint angles along the given trajectory (wd ∈ Wd), a set of

parametric B-Splines, provided by Scipy are fit to each sub-coordinate array [19].

With,

θi = [θ0,i, θ1,i, θ2,i, θ3,i, θ4,i, θ5,i]

for each desired joint angle solution in the given trajectory

Θd = [θi, θi+1, ... , θn].

Separating out sub-arrays for each joint:

Θ0 = [θi,0, θi+1,0, ... , θn,0],

Θ1 = [θi,1, θi+1,1, ... , θn,1],

Θ2 = [θi,2, θi+1,2, ... , θn,2],

Θ3 = [θi,3, θi+1,3, ... , θn,3],

Θ4 = [θi,4, θi+1,4, ... , θn,4],

Θ5 = [θi,5, θi+1,5, ... , θn,5].

A time array is then specified for each point in Θd,

t = [t0, t1, ..., tn] ∀θi ∈ Θd

s.t.

t0 = 0, tn = 1.
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The weights for the spline are specified as,

C = [c0, c1, ..., cn] ∀θi ∈ Θd.

In practice the weights at the start and finish of the spline are set as a maximum, multiple magni-

tudes larger than the next largest weights– forcing it to exactly equal the start and end points. For

each of the Θi sub arrays a spline is fit such that:

θi(t) = s(t)

with,

s(t) = f(ti,Θi, Ci, λ)

where lambda is the smoothing coefficient. More information on these B-Splines can be found in A

Fortran package for generalized, cross-validatory spline smoothing and differentiation and Spline

Models for Observational Data[23][24].

2.4 Point Ordering-TSP

With the ability to move between any given set of desired tack or weld lines, one must select

the order at which to execute these tacks or welds. The current implementation has available both

an ’on-line’ next nearest point algorithm for tack and weld, and a constrained or modified TSP

solution. The tack TSP utilizes a LKH implementation, while the Weld TSP utilizes a branch and

cut solver provided from Python MIP.
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Figure 2.30: LKH Tack TSP

2.4.1 Graph Generation

Both the Weld and Tack TSP are reliant on a discrete graph representation of the weld and tack

points. Each node in the graph is defined by its point and desired normal:

V = {v : (p⃗, n̂)},

∀ p⃗, n̂ ∈ R3.

Each edge can be defined as a combination of four desired configurations: two tack or desired weld

points and two safety points specified in 2.2. These edges may either be represented as a single

edge containing the associated travel points; or as the addition of four new nodes– with both being

implemented in the software. Taking each edge as the subset of nodes:

E = {(v1, v2) : v1, s1, s2, v2}

∀v1, v2 ∈ V
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with,

sn = vn + η [0, 0, z⃗].

Where z is determined via the normal, and η is the distance to the safety plane. The cost of each

edge can be defined as the summation of euclidean distance over each associated set of points.

ceuclidean =
3∑

i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 , ∀i ∈ {v1, s1, s2, v2}

Or a desired joint angle cost function, associated with the joint angles preluding the constraints of

the desired joint angle trajectory. With Joint angle solutions defined for each point.

θ⃗i = [θ0, θ1, θ2, θ3, θ4, θ5], ∀i ∈ {v1, s1, s2, v2}

∆θi := ∥(θ⃗i+1 − θ⃗i) · S⃗j∥

Here ∆θi is taken as the difference between each consecutive IK solution with the inner product

of S⃗j , a scaling array which in the simplest case is S⃗j = [1, 1, 1, 1, 1, 1]. Then,

cjoint =
3∑

i=0

∆θi.

For the joint angle cost associated with the tack TSP it was taken as the next nearest set of absolute

joint angles, that achieves the desired change in R6. Given a joint angle starting point θ⃗i, the next

solution θ⃗i+1 , is rounded down to the nearest π and then taken as a euclidean norm.

2.4.2 Tack TSP

The tack TSP is then solved by feeding the LKH solver the adjacency matrix of the generated

graph [25][26][27].

A(ai,j) =


Cf (i, j) ∀i ̸= j

0 ∀i = j

(2.1)
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Where Cf is the joint or euclidean cost function between any two nodes i and j.

2.4.3 Weld TSP

The weld TSP utilizing Python MIP, starts with a graph generated as in 2.4.2 [28]. This graph

is generated with two weld points and normals, associated with every desired weld, as the graphs

initial vertices and edges. The set of desired weld lines Dw contains each weld points starting and

ending configuration, w⃗0 and w⃗1.

Dw = {dw : (w⃗0, w⃗1)}

s.t.

w⃗n = [pn, n̂n].

Each start or finish point, w⃗n, contains the associated point p⃗n and normal n̂n. For each weld line

a node is added with its point and normal the average of the corresponding sub set.

Vweld nodes := {v⃗ : (pw, n⃗w), (pw, n⃗w) =
w⃗0 + w⃗1

2
, ∀ w⃗0,1 ∈ dw ∈ Dw}

Associated edges are then added for each weld and connecting points.

Ew = {{(v⃗, w⃗n) : ∀w ∈ v⃗} ∀v⃗ ∈ Vweldnodes}

The cost for these new edges is calculated as in the tack TSP for either euclidean or joint angle

cost with modifications for the joint angle cost as described.

Weld Joint Cost Function

The weld joint cost function is a modified version of the tack joint cost function. For two given

weld vertices:

∀ u⃗, v⃗ ∈ Vweldnodes

∃{(γ0, z), (z, γ1)} ⊂ Ew, ∀ n ∈ {u, v}.
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Here, z is the connecting pont(s) between two given weld vertices. For each associated weld node

pairs u and v, there exists two, possibly non-unique, points γ0 and γ1, that the weld node shares its

only edges with, redefining these as:

u⃗γ := (uγ0, uγ1)

v⃗γ := (vγ0, vγ1)

or,

n⃗w := (nγ0, nγ1).

Then the cost between any weld point v⃗ ∈ Vweldnodes and its connected γ⃗0 or γ⃗1 point is as defined

in the tack cost formulation. However, the cost is altered from any point, p0 ∈ u⃗γ , to any other

point, p1 ∈ v⃗γ . Call any pair of these points:

p0, p1.

If,

p0 = p1

then the cost Cjoint is defined as zero:

p0 = p1 ⇒ Cjoint = 0.

If p0 ̸= p1 then the safety points from the subset of tack edges, must be included in the motion

from one weld to the next as the connecting points are not coincident.

(p0, p1) ∈ E ⇒ (v1, s1, s2, v2)
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The cost from v1 to s1 and s2 to v2 remain as the difference between the closest satisfying IK

solutions. However, the cost from s1 to s2 is altered, take both safety point’s joint angles.

θ⃗s1 = [θ10, θ12, θ13, θ14, θ15]

θ⃗s2 = [θ20, θ22, θ23, θ24, θ25]

Define the non-scaled ∆θ as,

∆θi := ∥(θ⃗s2 − θ⃗s1)∥ = [(θ20 − θ10), (θ21 − θ11), (θ23 − θ13), (θ24 − θ14), (θ25 − θ15)].

Then as in the tack solution, the first 5 changes in joint angle are taken as the difference of the

nearest absolute angles. This holds for all but ∆θ(θ25 − θ15) with the last change in joint angle 5,

q5, taken as,

∆θ(θ25 − θ15) := (θ25 + (−π) ⌈|θ25 − θ15|
π

⌉ sgn(θ25 − θ15))− (θ15).

Here ⌈x⌉ symbolizes rounding x to the nearest integer value and sgn represents the sign function.

For ∆θ(θ25−θ15), the difference is calculated as follows. First the total angle change is calculated,

Ta = (θ25 − θ15).

Given the joint limits on the end effector, q5 = {θ5 : θl ≤ θ5 ≤ θu}.

If Ta = 0,

∆θ(θ25 − θ15) = 0.

If Ta > 0 and (θ25 − 2π) ≥ θl,

∆θ(θ25 − θ15) = ((θ25 − 2π)− θ15).
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If Ta < 0 and (θ25 + 2π) ≤ θu,

∆θ(θ25 − θ15) = ((θ25 + 2π)− θ15).

Otherwise the total angle change is taken as,

∆θ(θ25 − θ15) = Ta.

As before this total cost vector ∆θi may still be multiplied with a scaling vector S⃗j . The purpose

of this modification in cost for the end effector’s joint angle change is to more accurately capture

the cost of the movement executed. During the course of a required weld tour, if the weld gun has

to pick up to reach the next weld edge it looks ahead at the total orientation change in the next

edge and pre-rotates the end effector’s joint angle, q5, in the opposite direction that it will have

to turn throughout the welding process. Although, the required rotation of the next weld edge is

undetermined until the tour is solved; the reasoning is that the cost of maximizing or minimizing

|θ25| approximates its cost. Further, the cost associated with Ta = 0 encourages welds in the order

of equivalent end effector angles q5.
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(a) Tack Graph Representation

(b) Weld Graph Representation

Figure 2.31: Discrete Graph Representations: with node locations at desired points [29]
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(a) Tack Graph Kamada-Kawai Representation, Solution in Black

(b) Weld Graph Kamada-Kawai Representation, Solution in Black

Figure 2.32: Discrete Graph Kamada-Kawai Representations [29]
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Figure 2.33: Python MIP Weld Tour

2.4.3.1 MIP Equations

With the weld graph and edge cost defined, it is possible to formulate the MIP for the welding

TSP. First define a decision set X .

X := {Xn,m : n,m ∈ Z+}

Xn,m := {(x0, x1, x2, x3) : x ∈ {0, 1}}

∀ (u, v) ∈ Vweldnodes, ∃Xn,m ∈ X

Xn,m represents four decision variables between two weld nodes. Take figure 2.34, for the weld

to be completed across both u and v, each node must have both edges used in successive order as

in, (3, V ) ⇒ (V, 1) and (2, U) ⇒ (U, 4), or reversed. With edges defined for weld nodes (u, v) in

2.34, take four edges from v to u.

e0 ⇒ v → 1 → 4 → u
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Figure 2.34: Paths Between (u, v) ∈ Vweldnodes: required weld edges in red

e1 ⇒ v → 1 → 2 → u

e2 ⇒ v → 3 → 2 → u

e3 ⇒ v → 3 → 4 → u

Take four edges from u to v.

e4 ⇒ u → 4 → 1 → v

e5 ⇒ u → 2 → 1 → v

e6 ⇒ u → 2 → 3 → v

e7 ⇒ u → 4 → 3 → v

Decision array {{x0, x1, x2, x3}, {{x4, x5, x6, x7}} ⊂ X then represents the corresponding edges,

{e0, e1, e2, e3, e4, e5, e6, e7} that are used between any two weld nodes u and v. For the given nodes,

the following in-equality constraints guarantee both weld nodes edges are selected, for a tour that

visits every weld node.
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Ieq :=

{(x0 + x4 ≤ 1), (x0 + x7 ≤ 1), (x3 + x4 ≤ 1), (x3 + x7 ≤ 1)}

{(x1 + x5 ≤ 1), (x1 + x6 ≤ 1), (x2 + x5 ≤ 1), (x2 + x6 ≤ 1)}


For a tour over the subset {u, v} this leaves only two feasible tours.

v → 1 → 2 → u → 4 → 3 → v

and,

v → 1 → 4 → u → 2 → 3 → v.

These inequalities are then applied across all pairs in Xm,n,

I{Xn,m, Xm,n} :=

{(x0 + x4 ≤ 1), (x0 + x7 ≤ 1), (x3 + x4 ≤ 1), (x3 + x7 ≤ 1)}

{(x1 + x5 ≤ 1), (x1 + x6 ≤ 1), (x2 + x5 ≤ 1), (x2 + x6 ≤ 1)}



∀n,m ∈ Vweldnodes.

Though it was implemented as,

∀i ∈ Vweldnodes

and,

∀j ∈ Vweldnodes \ {i}

and,

∀k ∈ Vweldnodes \ {i, k}

∃(i, j), (j, k) ∈ Ew.

Where Ew is the set of all weld edges. Then given the four paths associated with edge (i, j) and
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the four paths associated with (j, k).

Ew(i, j) = {e0, e1, e2, e3}

Ew(j, k) = {e4, e5, e6, e7}

each en for general indexes (u, v) can be defined as,

en := u → w⃗ → v.

With w⃗ ∈ Z,Z4 being the set of connecting nodes; if one point in the first weld is repeated in the

second weld there will be a total of 1 nodes between the desired weld nodes u and v, along the

shortest possible path. Taking w⃗i,j as a list of indexes ∀w⃗ ∈ en ∈ Ew(i, j) and the same for w⃗j,k.

Where the list may be of any length, using the definitions:

w⃗u,v := {z0, z1, ..., zn}

wu,vf := zn

and,

wu,v0 := z0.

Then,

∀xn ∈ {x0, x1, x2, x3} ∈ Xi,j ∈ X

and,

∀x′
n ∈ {x′

0, x
′
1, x

′
2, x

′
3} ∈ Xj,k ∈ X

if,

wi,jf = wj,k0 ⇒ xn + x′
n <= 1
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or if,

wi,j0 = wj,kf ⇒ xn + x′
n <= 1.

With the selected weld lines constrained the MIP can be laid out. First the objective of the MIP is

to minimize:

[C(m,n, l)]X.

Where C is the cost function between weld node m and n using path l.

This can also be represented as,

∑
i∈Vw,j∈Vw,k∈Xi,j

ci,j,k xi,j,k

with,

Vw := Vwelds.

With ci,j,k being a summation of the cost of an array of points representing the path from weld

node to weld node, and xi,j,k a binary integer representing its inclusion in the solution.

Then define a decision set Y ,

Y := {{yi : yi ≥ 0}} : ∀i ∈ Vw}.

The final constraints on X specify that each desired weld node is only entered and exited once, and

on Y to eliminate possible subtours, adapted from Python MIP’s solution for a standard TSP [28]:

∑
j∈Vw\{i},k∈Xi,j

xi,j = 1 ∀i ∈ Vw

∑
i∈Vw\{j},k∈Xj,i

xi,j = 1 ∀j ∈ Vw

65



and,

yi − (n(Vw) + 1)(
∑

k∈Xi,j

xi,j,k) ≥ yj − n(Vw) ∀i ∈ Vw \ {0}, ∀j ∈ Vw \ {0, i}.

With n(vw) being the cardinality of the weld node set. Thus constraining the weld tour for the MIP.

2.4.3.2 On-line Solver

As mentioned in previous sections, the on-line solver is capable of executing either a greedy

solution or executing from the list of TSP tour points for either a weld or tack tour. This greedy

algorithm is described as below for both the tack and weld.

On-line Tack Pseudo Code The steps of the algorithm are as follows:

1. Calculate all the distances from the end effector’s current position to an array

containing the set of desired tack points [pi, pi+1, ...] and locate the point with

the smallest distance from the current point, pm.

2. If the current position of the end effector is below the safety plane move verti-

cally to the plane.

3. Re-orientate to above pm, drop down to the point and tack.

4. Remove pm from the list of desired tack points [pi, pi+1, ...]

5. If there are no more tack points, lift up, otherwise return to 1.

On-line Weld Pseudo Code The steps of the algorithm are as follows:

1. Calculate all the distances from the end effector’s current position to an array

containing the set of desired weld points [pi, pi+1, ...] acquired from every weld

line [w0, w1] in Dw and locate the point with the smallest distance from the cur-

rent point, pm ∈ {w0, w1}.

2. If the current position of the end effector is below the safety plane move verti-

cally to the plane.
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3. Re-orientate to above pm, rotating the end effector as far in the opposite direction

of the edges required angle change, and drop down.

4. Remove pm and its associated point in the set of weld lines from the list of

desired weld lines points [dw0, ..., dwn], and append it the list of current weld

lines to execute.

(a) Repeat step 1 for pm+1.

(b) If, the next closest edge is coincident with the end point of the current edge

and it is possible to append the joint angle solutions for a smooth function

within joint limits, then: add the edge to the list of current welds to execute,

remove it from the list of desired welds and return to 4.b, otherwise: go to

5.

5. Execute list of current weld lines and reset the current weld lines array.

6. If there are more weld lines return to 1. Otherwise, lift up to the vertical safety

plane.

On-line Angle Pre-Rotation-Weld The pre-rotation of the end effector as it transitions through

the safety plane from desired weld point to weld point works identical to that described in 2.4.3.

With the modification that variable Ta or total angle change, correspond to the total required angle

change for the next weld edge. With the weld edge being determined by the on-line next nearest

point algorithm, or provided by the TSP weld tour.

Ta = (θw2,5 − θw1,5)

This is done to give the welder a greater chance of connecting coincident welds. By turning q5

opposite to the required angle change of the next weld, the angle after the weld is completed will

lie closer to the center of the joint limits, possibly allowing the welder to continue. If the welder

can not continue to this coincident weld due to joint angle restraints, it rises vertically and resets

q5 for Ta belonging to the weld.
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3. RESULTS

3.1 Parameter Test

Table 3.1: Table of Weld Parameters

Parameter(unit) Value
Weld Mode(n/a) Pulsed MIG
Wire Feed Rate(ipm) 504
Arc Length(ratio/100) 50
Gas Flow Rate(cfh) 25
Weld Tip Velocity(cm/s) 0.6
Weld Tip Control Distance(cm) 2

The higher wire feed rate in 3.1 helps to deposit more material into the weld. These parameters

were found to be a quality operating point throughout all parameter tests. Welds with both a higher

velocity and feed rate have occasionally shown good quality, with results deteriorating as velocity

increases past 2 cm/s. A higher velocity at the same feed rate also results in less deposition, with

feed rate being limited to a maximum of 780 ipm as in B.2. The total weld length in figure 3.1 is

approximately 50 centimeters, at 0.6 cm/s this implies a weld duration of 83 seconds. For the two

inner grids of the prototype in figure 3.3, there are approximately 7.74 feet or 235.92 cm for the 8

interior grid welds. If the robot spent 100% of its travel time welding, it could accomplish these

in 6.55 min. The arc length ratio in table 3.1, is a value from 0 to 100, with its effect illustrated in

B.7.

The scaling S⃗j in table 3.2 is loosely based on the length of each joint’s connected link length,

over the total summed link length of the manipulator, with values adjusted by trial and error. The

‘b’ parameter for the welder is relatively low at 3. This is because this parameter is proportional

to the time it takes the trajectory to reach its steady-state velocity, a lower ‘b’ value runs the risk

of a higher observed jerk. Because the weld speed is so low at 0.6 cm/s this jerk due to a low
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Table 3.2: Table of Robotic Hyper-Parameters

Parameter(unit) Value
Weld Sigmoid ‘b’ parameter (n/a) 3
Weld Sigmoid ‘b’ parameter (n/a) 7-10
Reorientation Angular Rate (rads/s) π

5

Sigmoid Timing and TSP Joint Cost Vector, S⃗j(n/a) [10, 10, 10, 5, 2.5, 1]
Weld Joint Angle Trajectory Spline Smoothness Coefficient
(n/a)

2

Reorientation Joint Angle Trajectory Spline Smoothness
Coefficient (n/a)

5

Weld Path Spline Smoothness Coefficient (n/a) 5

‘b’ is unnoticeable, and a more consistent weld velocity is achieved across the weld line. The

smoothness coefficient for the weld line is lower than that of the reorientation; because as the

smoothness coefficient increases, the accuracy of the trajectory will decrease.

In 3.1 the diameter of the weld decreases towards the middle of the line, this is likely a result

of the end effector accelerating and decelerating into its trajectory, where the wire feeder quickly

reaches its steady state of 500 ipm.

Previous tests had issues with the BA1, leaving the wire attached to the work-piece at the end of

a weld. As the manipulator began to lift it would pull against the end effector causing the program

to fail. This is the reason the crater and start functions were utilized on the welder’s options; both

of these alter the starting and ending parameters of a weld when the enable function is triggered,

reducing the risk of the filler wire sticking to the end of the weld and leading and into a quality arc

at the start of the weld. The timing, wire feed rate, duration and magnitude of both of these lead

in and out options are all adjustable but the defaults were utilized for the results. Figure 3.2 was

conducted as a test to confirm the wire would no longer stick, with the gun lifting and resetting

after each weld.
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Figure 3.1: Long Weld Parameter Test

Figure 3.2: Consecutive Weld Parameter Test
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3.2 Grid Prototype Welds

The welded part in figure 3.3 is a minimal representation of the industrial grid part (figure

B.11). This minimal prototype required significantly less material, being a more suitable cost for

successive part tests.

Figure 3.3: Prototype Part with Two Grids Welded

The total time of the two grid weld tour was approximately 7.5 minutes, for a total weld length

of 7.74 feet or 235.92 cm. This gives the total weld length per time ratio of 234.92
(60(7.5))

= 0.524 cm/s

which is 87% of the 0.6 cm/s weld speed– meaning 87% of the time the manipulator spent moving

it is welding
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(a) Successful Corner to Corner Weld

(b) Successful Continuous Square Weld

Figure 3.4: Grid One Welds
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Figure 3.5: Corner to Corner Welds with Porosity
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4. DISCUSSION AND CONCLUSION

The following is a reflection based on the current results and their relation to the developed

methodology, followed by a overview of the possible scope of this project moving forward; with

possible improvements summarized.

4.1 Discussion

The results represent a proof of concept for an automated robotic welding system; but does not

demonstrate a fully automated and robust system. Poor weld quality although infrequent is present,

as in the porosity shown in the results. This presents as a welding process control problem. Al-

though the software has been fully packaged for easy integration with a user gui; this interface

has not been implemented. The solution does not allow easy operation from technicians; requiring

significant steps performed by developers. However, the project thus far has reached several mile-

stones that facilitate the development of such a system; branching out from the current solution.

Both polynomial and B-spline functions where presented in the Solution Methodology; but

only the splines were used outside of simulation. This is because the polynomial fit was an exact

function, not a best-fit as in the splines. This made small instantaneous jumps in the desired weld

angles create polynomial solutions with oscillations to large values outside of the joint angle lim-

its. In-fact, the polynomial solution being an exact fit had higher oscillations when compared to a

best-fit of the spline-which is a best fit of polynomial based functions. This is also referred to as

over-fitting, or capturing small changes in data due to error.

Issues with process control are also present in the arc from the filler metals occasional failure

to spark at the start of a weld, bending the filler metal into a coil. However, when the solution does

work it shows increases in throughput and performance over a typical human welder. The mean

quality of the welds performed likely surpasses that of a average human welder.
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4.2 Future Scope of The Project/Improvements

This sections outlines recommended program improvements and advancements for the future

scope of the project.

4.2.1 Selected TCP Frame

Although the current TCP frame approach works for and introduces a simplicity to the solu-

tion, it has numerous short comings. First, the computational requirements of implementing this

although low, could be reduced. An altercation of the TCP frame’s relative orientation at the tip

to the part itself could reduce the computational load. This reduction is with respect to the control

distance calculations that specify the point and the conversion of the normals utilized, in calcu-

lating this position, to the normals in calculating the orientation. One possible solution is instead

defining the three dimensional TCP frame as follows. First, the tool vector could remain as the

y-axis of the TCP frame but could be re-orientated such that it is parallel with the wire fed out of

the weld gun but in the opposite direction. This means that surface normals that define the desired

feed-in angle of the tool would match that of the tool itself, directly providing this orientation vec-

tor. This defines a plane from which the remaining orthogonal orientation vectors must lie. Given

the single degree of freedom corresponding to the rotation of these orthogonal vectors, one can

imagine the gun tip itself rotating about this axis, with the wire aligned along the specified normal.

If the new z-vector is specified such that it is in the same plane as this orientation vector and the

original z-axis of the tool, while remaining orthogonal; then the last vector, the x-axis, must point

either directly to the left or right of the gun depending on the positive or negative value of the new

z-axis in relation to the previous. Thus, if the x-axis is set as the current tangent of the path or

the overall travel direction of the weld, then the gun would be orientated to travel along this path

or in the specified travel vector. But this could invert the desired orientation if the corresponding

direction of the z-axis for this new orientation does not produce a orthogonal basis vector such that

the tool is orientated above the work piece rather than along it. Meaning link 6 of the robot lies

parallel to the horizontal plane rather than vertical at any given weld. This unintended effect would
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be hazardous as this is a larger horizontal area with a smaller clearance for vertical plates. This was

realized into the creation of the framework for new tool frame. One would have to define that a

given z or x direction is selected at this ambiguity and could be defined with concepts like working

planes for the robot. If this normal vector and these working planes were specified correctly, the

robot could also be adapted for welds above itself or on the bottom of a part, as well as many more

variations.

However, this was outside the current scope as the implementation was utilized for quick proof

of concept and can handle any planar welds. Further, the current relative frame of the TCP could

be adapted to various non-planar weld types (by altering R1) as well, but requires significantly

more trigonometric processing.

4.2.2 Welding Process Control

Thus far the welding parameters have been set throughout the entirety of the weld tour; it

would be an improvement if these parameters could be adjusted for different weld types through

the course of welding. Also there is additional state information for the measured current and

voltage during the welding process, for which a custom closed loop system could be developed.

Additionally, the parameters for the lead in/out, crater and start options were taken as the default.

Figure 4.1 provided by Miller shows the avalible parameters at phases of the weld.
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Figure 4.1: Crater Timing: available settings

4.2.3 Additional Weld Trajectories, Paths

The welder currently is only tuned to execute planar horizontal welds, although the necessary

movement for vertical welds is implemented in the lift-up trajectory, executed when traversing the

part. It would be useful to extend the current planar program to include vertical welds which would

have to be tuned to avoid gravitational effects. This would first include vertical welds but in time

could be extended to welds in a variety of orientations.

This could be done by grouping desired weld vectors into subsets occupying coincident planes.

The arm could be configured into an orientation that allows the execution of each subset, extending

the general solution to include the cost for transition between each operation plane.

In future implementations it would be useful to construct a more general solution, capable of

generating the paths with the surface normals, either by correcting registered collisions or finding

the path with a RRT* like algorithm from user selected points. These could introduce smoother

trajectories that could be executed in a single joint trajectory.

The inclusion of more robust geometric processing algorithms may be useful. Currently in the
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solution the desired points that are selected through PyVista, have to be embedded in the part file.

It would be useful to operators if the solution could help to identify possible weld lines in the part.

The timing of the weld trajectories could also be improved, consideration was not given to

the generated change over points in the joint trajectory. These can be identified by the three sub-

domains of the joint angle trajectory for q5 of a weld trajectory. These sub-domains correspond to

the three identified by the weld equation; these are a result of the turn in and out of the corner in

which the horizontal movement of the wire across the weld line is supplemented by the rotation of

the end effector turning the TCP frame’s y-axis to be perpendicular and in the plane of the weld

line. Instantaneously this rotation ceases as the turn is completed; this is a result of utilizing a

single Sigmoid or timing function across multiple change over points in the domain of the joint

trajectory.

Past weld trajectory implementations utilized a constant weld normal turn between the weld

start and finish. Experiments have also been pursued in oscillating weld paths with various quality

affects and various nominal weld normals along the straight line section of the weld line. Another

improvement would be the ability to execute general curved line welds. This would likely be done

by aligning the desired weld normal as some offset from the path tangent at any point. This could

be remedied with a method of either pre-determining the change over points or identifying them in

a trajectory, and spacing individual Sigmoid timing function across each sub-domain to smoothly

accelerate in and out of these regions.

Sensor integration could also lead to throughput improvements, the use of a laser guided or

similar system may help to estimate the necessary weld parameters to a scanned weld line. Sensor

input could also be adapted to speed up the part registration process.

4.2.4 Improving Cost Estimation MIP

Currently the decision variables in the Weld MIP TSP are not enough for the total cost of the

solution to exactly equal the cost to run the solution. In other words the decision variables in

the MIP do not accurately reflect the exact cost to transverse joint space in the solution. This is

because only the cost or change in joint angles along each sub-path, from start point to end point,
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is considered in the cost. This does not account for the accumulation of joint angles along each

successive weld line, the cost to reset its end effector due to joint limits, or how the end effector

winds up from reading the next weld line in the solution for the live execution.

4.2.5 Improving Hardware

The Arduino circuit represents a failure point– the cheap electronic system is likely to fail

and could further be improved upon by integration into the available UR10e controller’s input and

output terminals. The corresponding logic required to run the welder would have to be embedded

into ROS.

4.3 Conclusion

Overall the project has advanced the pursuit of am automated robotic welding system with cur-

rent results giving insight to a growing industry and guiding the future scope of the project. The

next step in the implementation of the solution is to immediately work on an integrated user inter-

face or gui, and replace the Arduino control system with an integration into the UR10e controller,

making parameter options and program inputs available to operators.

The results of the current project, when without failures, showed an improvement in through-

put and quality but a need for improvement in process control and robust operation procedures.

Future experiments will aim to quantify the improvement in performance with acquired data.
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APPENDIX A

PRELIMINARY RESULTS AND REFERENCES

A.1 Reference Figures

Figure A.1: Welding Types Reprinted from [1]: here DCEP/DCEN stands for (Direct Current
Electrode Positive/Negative)

A.2 Original Point-to-Point Path Generation

For the original grid part and implementation of the solution, two possible scaling’s were given

for each point, based on the movement to an adjacent inner point or the required movement over a

vertical section of the part. As mentioned two height scalings were originally chosen and selected

based on the distance between any two selected points:

As shown in figure A.3, in the original part there exists subsets of four points that don’t have

to cross a vertical ridge, as such when generating the path between any two random desired points
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Figure A.2: Part V.1 Relative to UR10e
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Figure A.3: Part V.1 Represented as a Complete Graph (not every connection is drawn for simplic-
ity): red identifies the internal subsets

Figure A.4: Tall and Short Path Scaling for Part V.1: here D3 is the diagonal distance inside a grid,
P1 is the plat height and H1 is the height of the parts ridges. Red Point:Low Control Point, Black
Point: High Control Point
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a distance computation is utilized to classify these points. If the euclidean distance between these

points is equal to the diagonal, or side length of the square grid, it is immediately classified as a

interior edge, otherwise being a path that must clear the ridges. These points are fed into a B-Spline

implementation in SciPy. Then these splines are interpolated at some pre-selected resolution scaled

by the length of the spline. Examples of these generated splines can be found in figure A.5.

(a) Straight Line Paths from an Outer Point (b) Spline Paths from an Outer Point

(c) Straight Line Paths from an Inner Point (d) Spline Paths from an Inner Point

Figure A.5: Original Part Control Point Paths
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Figure A.6: Original TSP Tacking Solution

Figure A.7: Original Mixed Integer Program Solution to Weld TSP

A.3 Original Part Results

Figures in this section show the massive warping of the original part, misaligned welds and

burn-through characteristic of the first implementation. The thickness of the early prototype part

was below the recommended minimum for welding with 0.035 inch wire, this was a reason for

the weld burning through the material and the significant deformation of the part due to poor heat
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dissipation. The misaligned welds were because of a misaligned TCP utilized in the program

compared to the physical tool. This is what led to the redesign of the part present in results.

Figure A.8: Warping of the Original 1
8

Inch Thick Weld Grid
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Figure A.9: Misaligned Welds of the Original 1
8

Inch Thick Weld Grid

Figure A.10: Burn-through Welds of the Original 1
8

Inch thick Weld Grid

A.4 Weld Tip Re-calibration

The observed error of the provided TCP point.
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(a) TCP Error: metal tip versus white dot (b) TCP Error Measured Distance

Figure A.11: Quoted BA1 Error

A.5 Polynomial Curve Fitting

The polynomial fitting was done with a procedure outlined in [30]. This is done with 5 paramet-

ric functions for each desired joint’s trajectory. For each angle in the joint trajectory at a specified

time, a constant must be added to the polynomial to facilitate this constraint. Given n angles at n

points in time:

p(t) = a0 + a1t+ a2t
2 + ...+ an−1t

n−1.

Additionally for each velocity and acceleration (or higher derivative) constraint k an additional

degree must be added to the polynomial:

p(t) = a0 + a1t+ a2t
2 + ...+ an−1t

n−1 + ...+ a(n−1)+kt
(n−1)+k.

These constraints can be laid out as:

θ(t) = p(t)

for each specified angle at a specified time. If there is a given velocity or derivative constraint these

can be expressed as:
dθ(t)

dt
=

dp(t)

dt
,
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d2θ(t)

dt2
=

d2p(t)

dt2
,

or:
dnθ(t)

dtn
=

dnp(t)

dtn
.

For each time t = t0, ..., tf with ((n− 1) + k) = p:



1 t0 t20 ... tp0

0 1 2t0 ... pt
(p−1)
0

0 0 2 ... p(p− 1)t
(p−2)
0

...

1 tf t2f ... tpf

0 1 2tf ... pt
(p−1)
f

0 0 2 ... p(p− 1)t
(p−2)
f





a0

a1

a2

a3

a4

a5
...

ap



=



θ(t0)

dθ(t0)
dt

d2θ(t0)
dt2

...

θ(tf )

dθ(tf )

dt

d2θ(tf )

dt2



as:

T a⃗ = Θ⃗

and can be solved utilizing the NumPy Python Library [31]:

a⃗ = T−1Θ⃗.

As T is guaranteed to be non-singular. Further the components of T can be expressed as:

∀(i, d) ∈ {i ≥ d} ⇒ T(i,j) = (
i!

(i− d)!
)(tj)

(i−l),

∀(i, d) ∈ {i < d} ⇒ T(i,j) = 0.
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Here d represents the given derivative at row j where:

∀d ̸= 0 ⇔ tj = tj−1.

An example of this polynomial fit is shown in 2.25. The constraints utilized are setting initial and

final joint velocities to zero, and setting the desired joint angles at each time interval provided by

the Sigmoid curve.
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APPENDIX B

EQUIPMENT

B.1 Relevant Manual Pages

Figure B.1: Provided Miller Connection Diagram
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Figure B.2: Provided Miller Connection Information
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Figure B.3: Provided TCP for BA1
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Figure B.4: Wire Feeder Common Problems
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Figure B.5: Recommended Shielding Gas
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Figure B.6: Common Welder Issues and Solutions
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Figure B.7: Miller Arc Control
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B.2 Component List

Table B.1: Component List

Part Description
WIRE MS 70S6 035 33# SP 33 lb reel of 0.035 inch diam-

eter Mig Wire Mild Steel
WIRE REEL STD Wire reel stand from Lincoln

Electric
BERTT-A035CH Tapered Contact tip machined

into the measurement (10
tips)

TRE59D06 INSULATING
DISC KUKA

Connecting polymer ’chuck’
from weld gun to UR10e

MIL907431 MIG WELDER
INVISION 352 MPA

Invision welder

CONTROL BOX S74 MPA
PLUS COBOT MODEL

Weld Feeder Controller

TREBAS2201C MOUNT-
ING ARM ASSEMBLY

Mounting arm from ’chuck’
to weld gun

TREBA12AAANDOCM
MIG GUN BA1 COBOT
AIR COOLED

gun connected to the wire
supply and the mountaing
arm

MIL151026 DRIVE ROLL
KIT 035 V GRV 4 RO ROLL

Wire feeder rollers for 0.035
inch wire

MIL300740 DRIVE ASSY
74MPA

wire feeder and gas supplier

ADAPTER TO WIRE
FEEDER PIPWPT6

Adapter to wire feeder

MIL254864010 CABLE
MOTOR GAS MPA PLUS

Cable to wire drive

MIL300405 CONNECTOR
KIT

Weld cables not provided
with other orders

B.3 Additional Equipment Images

In figure B.11 the lattice grid on the table was the original part to be tested on the second iter-

ation of the project, this was abandoned for the prototype-parts shown in the results.
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Figure B.8: Miller Invision 352 MPa
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Figure B.9: Miller S-74 MPa, with crater and start functions
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Figure B.10: Miller Insight Module

Figure B.11: Assembled System, with wire feeder on the left, and the S-74, Insight Module and
Invision under the table, on the table is the real-size grid model
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Figure B.12: Under-side of Weld Table with: Invision 352, Insight Module, S-74, and UR10e
controller

Figure B.13: Under-side of Weld Table: labeled
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