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Abstract:

The following is an investigation of Dubin's Vehicle problem and the traveling salesman problem.
When given a set turning radius and heading Dubin’s Vehicle can be used to determine the shortest path
between these two points. This concept is relatively obvious when looking at simplified problems,
however when the coordinates and heading become more complex or multiply it would be beneficial to
create a program that determines this. The first section of this report details the creation and
implementation of an algorithm that can be used to solve any Dubin’s Vehicle, and can be applied
iteratively to any set of headings and points on a two dimensional plane. However alongside Dubin’s
Vehicle is another well known problem that is the Traveling Salesman Problem. When proposing a set of
points it is most often desired to understand the shortest path required to travel to each individual point.
While simple examples of this problem may be easily analyzed by hand, more complex arrays and
scenarios require the creation and implementation of a program that can solve this. Utilizing the Dubin’s
Vehicle Plan created previously, a program that can solve the Traveling Salesman Problem was created
and tested against a number of applications. These programs were then demonstrated and it is shown that
they are effective at solving complex sets of points and headings, and effectively solving the Traveling
Salesman problem using Dubin’s Vehicle.
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Introduction

Lester Dubin proposed that when given a vehicle with a set heading, and turning radius on a
Euclidean plane that there is at a maximum a path that contains at most a maximum curvature and straight
lines. What this really means is that to connect these two points and headings the most that will need to
happen is that the vehicle will have to follow a curve with a radius equivalent to its minimum turning
radius, a straight line of some distance, and then a final curve to match the heading. This technique seems
to have the most immediate application to technologies such as trains and airplanes, which have various
restrictions placed on their freedom of movement. However technique proves useful in robotics as it can
be used to plan optimized paths for vehicle based robotics. However applying Dubin’s methods to actual
examples can be quite difficult and complex as the more locations and headings are added to the potential
path tend to make finding the optimal path confounding. To make the most use of Dubin’s Vehicle it
would be best to create a program that could take two points and two headings as inputs, and then output
the most optimal path for these two points.

Once this program is created it could then be used and applied to a classic logistics problem,
which is the Traveling Salesman Problem. This problem is proposed as a method of determining the
shortest path to each location, when given a set of locations and distances between those locations. If all
of these locations were Dubin’s Vehicle locations with set headings, then the program created previously
could be used to create paths between all of the locations, and determine the distance between them all.
Given this information a nodal network can then be created, and evaluated to determine which paths form
the optimal path between all these points, and the Travelling Salesman Problem can be solved.

This report will be used to detail the process and results of creating the Dubin’s Vehicle program,
and code. It will then detail the implementation of this code to generate satisfactory results, and all
possible situations that a Dubin’s Vehicle can encounter when trying to find the optimal route from
location to location. After this it will be shown how this program will be applied to the Traveling
Salesman Problem and how the nodal networks were formed and analyzed when coming to a conclusion
using these methods.
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Body

The first step to approaching the Dubin’s Vehicle problem is to draw the correct geometric
constraints:

Figure 1: Geometric Problem Set Up

Clearly, Given a second point and heading that lies outside of the minimum turning radius it is
immediately advantageous to start a clockwise or counterclockwise rotation, this rotation occurs until a
tangent line is coincident with a tangent line of either of the second points turning circles. This coincident
tangent line must also align in the direction of travel between both circles. As such between two points
and given two sets of opposite spinning circles there exists only four solutions as shown.
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Figure 2: Possible solutions for CSC(Curve Straight Curve)

Then, from the possible trajectories presented the optimum is found simply by summing the arc and line
lengths and selecting the lowest valued path. However, complications arise when the desired point and
heading lies within the minimum 4 times the turning radius. When this occurs a possible solution is
known as the teardrop maneuver drawn below:
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Figure 3: Teardrop Solutions CCC (Curve Curve Curve)

Notice, for this teardrop to be a solution both the start and end circle must be spinning in the same
direction, opposite the center circle.
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Figure 4: CC (curve curve) solution

Figure 4 represents a unique solution to the CSC solution in which the tangent line between the circle is
zero, resulting in a CC solution.

The algorithm used to develop the optimum path was implemented with all original software.
This was done by first checking if CCC was a solution via the four radius condition, then using geometric
identities to solve the path lengths of all CCC and CSC solutions or just CSC; and select the path with the
shortest possible cost. Mathematical impossibilities had to be ruled out, such as, paths that instantly
changed direction opposite the rotation of the circle or paths where there was no real solution to the
tangent line of the CSC problem. The results of this algorithm are presented in the following section.

The traveling salesman problem finds the optimal solution from a starting point to hit every
location once and then return to the desired start point. The optimal solution is typically bounded with
what is known as a minimum spanning tree or MST. This minimum spanning tree is the minimum cost
path to hit every node without returning to the original point. The solution to the TSP problem is typically
bounded as follows:

𝑀𝑆𝑇 < 𝑇𝑆𝑃 < 2 * 𝑀𝑆𝑇
Where the cost of the optimum TSP solution lies between MST and twice the MST cost.
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Results:
Dubin's Vehicle Results:

Figure 5: Functionality for negative numbers
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Figure 6: Pivot Maneuver
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Figure 7: Teardrop Maneuver
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Figure 8: Curve Straight Curve Solution
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Figure 9: CC Maneuver

Travelling salesman results:
Given the selected nodes below:

Table 1: Network Nodes

Node Number: Position (X,Y) Heading (X,Y)

1 (1,3) [-1,0]

2 (5,6)) [1,0]

3 (20,5) [0.6,0.8]

4 (15,2) [-.2425,0.9701]

5 (20,1) [0,1]

MATLAB is used to draw a directional graph:
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Figure 10: Fully Connected Directional Network with cost determined by Dubin’s Vehicle algorithm
originating from node 1

Unfortunately, MATLAB lacks the functionality to solve a directional bigraph in the minimum spanning
tree function, as such best estimates are made for the MST cost. First, the non directional graph is created
and utilized in the MST function:
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Figure 11: The solutions to the MST function for non-directional paths presents two solutions, but does
not differentiate between path directions

To verify this solution a rooted tree is created from the starting node:

Figure 12: Rooted Tree
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We can further confirm this solution by removing the paths in the reverse direction of the MST solution
from the non-directional digraph and resolving the MST function repeatedly. First as the solution is
guaranteed to use the second point of (5,6) the paths approaching this node from following nodes are
removed.

Figure 13: MST reverse edges removed from first solution

This then guarantees that the 3rd node will be (15,2), but we are now faced with the complexity of a
circular connection. The reverse paths are removed in the current solution:
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Figure 14

But Figure 14 fails to account for the difference in direction between ‘4.049’ and ‘9.045’ remedying this
error provides the following MST solution:
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Figure 15: Total MST cost of 31.69

This matches the rooted tree previously provided.
In order to implement the travelling salesman problem an online toolbox was used from [1]. First a
distance matrix was created to provide the associated cost between nodes to the algorithm.

Table 2: Distance matrix

Start
Node/End
Node

1 2 3 4 5

1 0 7.26 22.27 18.67 23.40

2 7.26 0 15.19 12.30 16.82

3 20.769 19.79 0 10.244 9.04

4 20.03 13.58 6.22 0 8.07

5 24.93 18.85 4.04 6.0253 0
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Notice, as in the network map, the cost from one node is not the same in the reverse direction and the
associated cost from a node to itself is zero. This distance matrix was then passed to the TSP solver to
provide the following order of stops.

Table 3: Node Order

2 4 5 3 1

This solution can then be generated in a for loop with the Dubin's plot function to generate the following
solution.

Figure 16: Dubin's Vehicle Network Solution

Bounding this solution:
𝑀𝑆𝑇 < 𝑇𝑆𝑃 < 2 * 𝑀𝑆𝑇
31. 69 < 52. 46 < 63. 39
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Flow Charts:

Figure 17: Dubin's Vehicle Flow Chart
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Figure 18: Simplified MST algorithm
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Conclusion

Although the solution to the Dubin’s Vehicle problem is often easily obtained from an observer
and geometric arguments. Structuring a computer program to solve this problem is complex. Often,
during the development of the code the program would return solutions which while they were the
minimum length, were unachievable in the real world. An example of this were solutions in which the
linear portion of the CSC line would have instantaneously changed direction from the curve leading into
it, as such the program then accounted for the fact that rotation of the curve had to match the rotation
generated by the straight line around the circle's center. Another issue that had to be resolved was that the
program would occasionally return the total change in angle for a curve to be 2𝜋 this would add an
unnecessary length to the solution; thus, these angles had to be normalized with an if statement. The
results are mathematically beautiful and once presented it is clear that they meet the optimum path.

The results from the MSP calculation can be confirmed by hand calculating alternatives. It is
found that this is the minimum spanning tree. When the MSP was implemented in MATLAB the user
decided what edge lengths to remove or add to cause the solution to converge to the real value of the
MSP. Given a much larger network this process would be cumbersome and it would be optimal to design
an algorithm that can know and account for the direction of travel of each edge. Given more time this
would have been implemented. The TSP problem was solved from a given algorithm, developing this
algorithm individually could take a multitude of days, but would be a useful exercise for understanding.
As expected this solution lied within the bounds of MSP and 2*MSP. The TSP problem solved is also
known as an asymmetric problem as costs from one node to another do not match the cost in the reverse
direction, typically these are easier to solve then symmetric TSP problems.

The next step moving forward in the Dubin's algorithm would be to implement a solver that can
account for obstacle avoidance. This would have relecencey in autonomous vehicles that either need to
detect, or know ahead of time, objects in its path from start to finish and avoid these. Once this algorithm
is created it could again be coupled with a TSP algorithm to allow a multitude of applications such as
drone flight path planning.

Additional questions arise given additional or modified constraints. What if some of the points
have specified headings and others do not? How can the Dubin's vehicle algorithm be modified for this?

Overall this project was a useful exploration into the implementation of optimization algorithms
for solving real world problems.
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Appendix

Code (This does not include embedded function):
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function
[solutiontype,startendcircle,CCCcircle,optpathpoints,theta1,theta2,theta12,theta3,theta4,theta34,thetaCCC1,t
hetaCCC2,thetaCCC12,cost] = optpath(p1,p2,h1,h2,r)

[circle1,circle2]=circlesCSC(p1, h1, r);
[circle3,circle4]=circlesCSC(p2, h2, r);
CSCcircles=[circle1;circle2;circle3;circle4];
% FROM 1; FROM 2;TO 1;TO 2

CSCgrouped = CSCgrouper(CSCcircles);
PathpointsCSC = CSCpathpoints(CSCgrouped,r);
try
[totallengthCSC,theta1r,theta2r,theta12r,theta3r,theta4r,theta34r] =

CSClength(CSCgrouped,PathpointsCSC,CSCcircles,p1,p2,r);
%[totallength,theta1r,theta2r,theta12r,theta3r,theta4r,theta34r] =

CSClength(CSCgrouped,pathpoints,CSCcircles,p1,p2,r)

CCClengths=inf*ones(4,1);

if norm((p2-p1))<(4*r);

CCCgroupedCSCcircles=[CSCgrouped(1,:);CSCgrouped(4,:)];

%CSCcircles=[circle1;circle2;circle3;circle4]
%solve intermediatary circles
[CCC,pathpointsCCC]=CCC_center(CCCgroupedCSCcircles,r);

[totallengthCCC,theta1rC,theta2rC,theta12rC,theta3rC,theta4rC,theta34rC,thetaCCC1r,thetaCCC2r,thetaC
CC12r]=CCClength(CCCgroupedCSCcircles,CCC,pathpointsCCC,p1,p2,r);

%[totallength,theta1r,theta2r,theta12r,theta3r,theta4r,theta34r,thetaCCC1r,thetaCCC2r,thetaCCC12r] =
CCClength(CCCgroupedCSCcircles,CCC,points,p1,p2,r)

if min(totallengthCCC)<min(totallengthCSC);
solutiontype=1;
[cost,I] = min(totallengthCCC);

selection=[CCCgroupedCSCcircles(1,:);CCCgroupedCSCcircles(1,:);CCCgroupedCSCcircles(2,:);CCCgroup
edCSCcircles(2,:)];

startendcircle=selection(I,:);
CCCcircle=CCC(I,:);
optpathpoints=pathpointsCCC(I,:);
theta1=theta1rC(I);
theta2=theta2rC(I);
theta12=theta12rC(I);
theta3=theta3rC(I);
theta4=theta4rC(I);
theta34=theta34rC(I);
thetaCCC1=thetaCCC1r(I);
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thetaCCC2=thetaCCC2r(I);
thetaCCC12=thetaCCC12r(I);

else
solutiontype=0;
[cost,I] = min(totallengthCSC);
startendcircle=CSCgrouped(I,:);
CCCcircle=['N/A ','N/A'];
optpathpoints=PathpointsCSC(I,:);
theta1=theta1r(I);
theta2=theta2r(I);
theta12=theta12r(I);
theta3=theta3r(I);
theta4=theta4r(I);
theta34=theta34r(I);
thetaCCC1='N/A';
thetaCCC2='N/A';
thetaCCC12='N/A';

if min(totallengthCCC)==min(totallengthCSC)
fprintf('Warning:There are equivilent lengthed solutons for CSC and CCC, defualt to CSC')

end
end

else
solutiontype=0;
[cost,I] = min(totallengthCSC);
startendcircle=CSCgrouped(I,:);
CCCcircle=['N/A ','N/A'];
optpathpoints=PathpointsCSC(I,:);
theta1=theta1r(I);
theta2=theta2r(I);
theta12=theta12r(I);
theta3=theta3r(I);
theta4=theta4r(I);
theta34=theta34r(I);
thetaCCC1='N/A';
thetaCCC2='N/A';
thetaCCC12='N/A';

end
catch
fprintf('Warning:There is no solution for CSC defualting to CCC')
CCClengths=inf*ones(4,1);
CCCgroupedCSCcircles=[CSCgrouped(1,:);CSCgrouped(4,:)];
%CSCcircles=[circle1;circle2;circle3;circle4]
%solve intermediatary circles
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[CCC,pathpointsCCC]=CCC_center(CCCgroupedCSCcircles,r);

[totallengthCCC,theta1rC,theta2rC,theta12rC,theta3rC,theta4rC,theta34rC,thetaCCC1r,thetaCCC2r,thetaC
CC12r]=CCClength(CCCgroupedCSCcircles,CCC,pathpointsCCC,p1,p2,r);
solutiontype=1;
[cost,I] = min(totallengthCCC);

selection=[CCCgroupedCSCcircles(1,:);CCCgroupedCSCcircles(1,:);CCCgroupedCSCcircles(2,:);CCCgroup
edCSCcircles(2,:)];
startendcircle=selection(I,:);
CCCcircle=CCC(I,:);
optpathpoints=pathpointsCCC(I,:);
theta1=theta1rC(I);
theta2=theta2rC(I);
theta12=theta12rC(I);
theta3=theta3rC(I);
theta4=theta4rC(I);
theta34=theta34rC(I);
thetaCCC1=thetaCCC1r(I);
thetaCCC2=thetaCCC2r(I);
thetaCCC12=thetaCCC12r(I);

end
end

function PLOT =
Dubin'splot(solutiontype,startendcircle,CCCcircle,optpathpoints,theta1,theta2,theta12,theta3,theta4,theta34,t
hetaCCC1,thetaCCC2,thetaCCC12,cost,p1,p2,h1,h2,r)

hold on

%Start point
plot(p1(1),p1(2),'r*');
plot(p2(1),p2(2),'r*');

%headings
dp1 = h1;
dp2 = h2;

quiver(p1(1),p1(2),dp1(1),dp1(2),0.5,'LineWidth',1.5);
quiver(p2(1),p2(2),dp2(1),dp2(2),0.5,'LineWidth',1.5);

%pathpoints
plot(optpathpoints(1),optpathpoints(2),'r*');
plot(optpathpoints(3),optpathpoints(4),'r*');

%FIRST CIRCLE
if theta1<theta2
angleInitial=theta1;
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angleFinal=theta2;

else
angleInitial=theta2;
angleFinal=theta1;

end
%
% if theta12>0&theta2<theta1&theta1==0
% 3
% angleInitial=angleFinal;
% angleFinal=2*pi;
% end

if theta12>0
theta = linspace(angleInitial,angleFinal);

else
theta = linspace(angleFinal,angleInitial);

end

if theta12>0&theta1>theta2
theta = [linspace(theta1,2*pi),linspace(0,theta2)];

elseif theta12<0&theta2>theta1
theta = [linspace(theta2,2*pi),linspace(0,theta1)];

end

%initial angle of the arc in degrees
%final angle of the arc in degrees
centre=startendcircle(1,1:2); %centre of the arc
radius=r; %radius of the arc
xcoords = centre(1)+radius*cos(theta); %x coordinates
ycoords = centre(2)+radius*sin(theta); % y coordinates
plot(xcoords,ycoords,'black','LineWidth',1); %plot the arc

%LAST CIRCLE

% if theta34>0&theta3>theta4&theta4==0
%
% end

if theta3<theta4&theta
angleInitial=theta3;
angleFinal=theta4;

else
angleInitial=theta4;
angleFinal=theta3;

end

% if theta34>0&theta3>theta4&theta4==0
% 31
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% angleInitial=angleFinal;
% angleFinal=2*pi;
% end

if theta34>0
theta = linspace(angleInitial,angleFinal);

else
theta = linspace(angleFinal,angleInitial);

end

if theta34>0&theta3>theta4
theta = [linspace(theta3,2*pi),linspace(0,theta4)];

elseif theta34<0&theta4>theta3
theta = [linspace(theta4,2*pi),linspace(0,theta3)] ;

end
%initial angle of the arc in degrees
%final angle of the arc in degrees
centre=startendcircle(1,3:4); %centre of the arc
radius=r; %radius of the arc
xcoords = centre(1)+radius*cos(theta); %x coordinates
ycoords = centre(2)+radius*sin(theta); % y coordinates
plot(xcoords,ycoords,'black','LineWidth',1) %plot the arc

if solutiontype==0
%CSC
X=[optpathpoints(1),optpathpoints(3)];
Y=[optpathpoints(2),optpathpoints(4)];
plot(X,Y,'black','LineWidth',1);

elseif solutiontype==1
%CCC
if thetaCCC1<thetaCCC2
angleInitial=thetaCCC1;
angleFinal=thetaCCC2;

else
angleInitial=thetaCCC2;
angleFinal=thetaCCC1;

end

% if thetaCCC12>0&thetaCCC2>thetaCCC1&thetaCCC1==0
% 32
% angleInitial=angleFinal;
% angleFinal=2*pi;
% end

if thetaCCC12>0
theta = linspace(angleInitial,angleFinal);

else
theta = linspace(angleFinal,angleInitial);
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end

if thetaCCC12>0&thetaCCC1>thetaCCC2
theta = [linspace(thetaCCC1,2*pi),linspace(0,thetaCCC2)];

elseif thetaCCC12<0&thetaCCC2>thetaCCC1
theta = [linspace(thetaCCC2,2*pi),linspace(0,thetaCCC1)];

end

%initial angle of the arc in degrees
%final angle of the arc in degrees
centre=CCCcircle; %centre of the arc
radius=r; %radius of the arc

% theta = linspace(angleInitial,angleFinal);
xcoords = centre(1)+radius*cos(theta); %x coordinates
ycoords = centre(2)+radius*sin(theta); % y coordinates
plot(xcoords,ycoords,'black','LineWidth',1) %plot the arc

end
title('Dubin's Vehicle');
xlabel('X');
ylabel('Y');
text(optpathpoints(1,1)+1,optpathpoints(1,2)+1,append('Cost=',' ',num2str(cost)));
axis equal;
axis padded;
PLOT=figure(1);
end
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