

Smart Lock Security System
Group 22

Group Members:

Ava Raymond

Colin Slunecka

Nick Trammell-Jamison

Roman Yoder

13 December 2019

1

Table of Contents

Design Summary…………………………………………………………………………………. 2

System Details…………………………………………………………………………………… 4

Functional Diagram……………………………………………………………………... 7

 Logic Diagram……………………………………………………………….………….10

Design Evaluation………………………………………………………………………………..11

Partial Parts List………………………………………………………………………………….16

Lessons Learned………………………………………………………………………………….20

Appendix A………………………………………………………………………………………24

Appendix B………………………………………………………………………………………25

References………………………………………………………………………………………..40

2

Design Summary

The Smart Lock Security System secures a standard walk-through hinged door that would

ordinarily be located at the front of the house. The system is designed to lock the door when

specific parameters are met. It is comprised of three major subassemblies: a deadbolt installed in

a door frame, a control box installed in the wall next to the door, and a sensor board placed in a

garage. These components can be seen below in Figures 1 and 2. There are three main

parameters that will determine when the door is locked and only one parameter for unlocking the

door. The three locking parameters include a numeric keypad, a photoresistor, and an ultrasonic

sensor. The door will unlock when the correct numeric combination (eg. 1234) is pressed on the

12-digit keypad and the pound key (#) is then pressed. In addition, the system will lock the

deadbolt if it goes from light to dark outside or if a vehicle departs from the scaled-down garage

stall. Similarly, the door can be locked directly from the keypad by pressing the star (*) key.

 A speaker plays tones when numbers are pressed on the keypad as well as distinct

sounds for correct and incorrect numeric sequence entry and when the lock actuates. The LCD

display shows the current status of the system and the keypad numbers that have been pressed.

Additionally, the LED strip surrounding the control box will initiate as various colors depending

on the status of the system.

Figure 1: System Overview (Front View)

3

Figure 2: System Overview (Rear View)

4

System Details

 The main components of the Smart Lock Security System’s control box can be seen

below in Figures 3, 4, and 5. The back cover of the aluminum box has been removed and some

components have been moved outward for clarity. Nylon screws and spacers were used to ensure

that there is no electrical pathway between the components or to the box itself. Screw terminals

and pin headers on the circuit boards ensure that all wires will have a solid connection.

Figure 3: Internal Components

Figure 4: Main Display Board

5

Figure 5: Transistor Bank Controlling LED Strip

The solenoid deadbolt is installed into the frame of the door while it’s corresponding

magnetic faceplate is mounted to a notch in the edge of the door shown below in Figure 6. The

deadbolt extends just over 0.5 in., ensuring ample overlap between the lock and the door.

Figure 6: Deadbolt Installed in Door Frame

6

The garage sensor board was installed on the exterior wall of the model garage with the

ultrasonic sensor protruding through the wall into the garage as shown in Figure 7. In a full scale

application this board would be housed in some kind of container and either be mounted in the

ceiling or within the wall of a real garage with long enough wires for the photoresistor to be

exposed to the outdoors. A wiring diagram for every component of the system can be found in

Appendix A.

Figure 7: Sensor Board on Exterior Garage Wall

Operation of the Smart Lock Security System is very simple. The overall flow of

information through the system can be seen below in Figure 8.

7

Figure 8: Functional Diagram

On startup, the door will automatically lock. At any point during operation, the star (*)

button can be pressed to lock the door. When this happens, the LCD will display “LOCKING”,

the speaker will sound, the LED strip will turn blue, and the deadbolt will actuate the lock. The

screen will appear as it does in Figure 9. The screen will then clear itself and wait for further

inputs.

Figure 9: Example Status Display on LCD Screen

The user interface for the system is shown below in Figure 10. The potentiometer

controls the contrast of the LCD screen, and all audio and visual indicators are easily noticeable

to the user.

8

Figure 10: User Interface

The keypad is the only way to unlock the door in this system. Inputs to the keypad are

sent to the first PIC16F88 and converted to a binary signal and trigger, through the use of a

polling system, via five outputs to the Arduino. The PIC code to interpret the keypad inputs can

be found in Appendix B. As buttons are pressed, the trigger is detected and they appear on the

LCD with a tone sounding each time. After four buttons have been pressed, the pound button (#)

must be pressed to enter the code. If the passcode is correct the LCD will display

“UNLOCKING”, the speaker will sound a unique chime, the LED strip will turn green, and the

door will unlock. If the passcode is incorrect the LCD will display “INCORRECT CODE”, the

speaker will play a different chime, the LED strip will turn red, and the door will remain locked.

The screen will then clear after a moment and the LED strip will return to white.

The automatic sensors for the system are connected to the second PIC16F88 that acts as

an analog to digital converter and pulse width reader to send a high signal to the Arduino if it

becomes dark outside or if a car is detected leaving the garage. The PIC code for the sensor PIC

can also be found in Appendix B. Additionally, these sensor inputs will only lock the door

provided that the door is already unlocked, otherwise, the sensors will remain inactive. Once

either of the sensors has triggered the door lock, they will not be read by the Arduino until it has

received an unlocking keypad code while the sensor pic is outputting a low signal. The logic

9

diagram showing how the entire system works together can be seen in Figure 11. Ultimately, all

inputs and outputs flow through the Arduino Uno and the Arduino code can be found in

Appendix B. Several of the output wires from the Arduino are connected to the gates of

transistors since the Arduino does not output a high enough current to activate the necessary

components.

The power source for the system is a rechargeable 5/12 V dual output battery.

Unplugging the power supply from the wall does not cause any sort of system interruption as it

seamlessly switches to battery mode. The battery is rated for 6000 mAh. Since the largest current

draw in the system is the deadbolt at 450 mA, it is estimated that the system should run for

approximately twelve hours in the event of a power outage. Similarly, the LED strip and the

deadbolt both operate off of the 12V battery output. A 5V relay is used to switch on and off the

deadbolt while also isolating the 12V power supply from other components. The LEDs use a row

of MOSFETs with each MOSFET triggering the 12V supply necessary for each color. If all three

transistors are active, white light will appear at the LED. The red, green, and blue MOSFETs can

be initialized in any combination to show a variety of colors.

10

Figure 11: Logic Diagram

11

Design Evaluation

 The following sections outlines the performance of the Smart Lock Security System in

terms of the functional categories specified in the grading criteria. The components mentioned

within each respective category required extensive research and effort when integrating the

overall Smart Lock design. In addition, key features of each component are discussed as well as

any additional qualitative characteristics present in the system. Many of the components went

through several iterations in terms of software and circuitry until they each functioned reliably;

then they were compiled into one fully functioning system.

Category A: Output Display

1. LCD Screen

○ Custom screen sequences that indicate overall system status

○ Interfaced with an Arduino Uno

○ Direct means of user feedback

○ Backlit display controlled by a potentiometer

For the output display, an LCD is interfaced with a numeric keypad. The LCD primarily

serves as direct feedback between the user and the security system; a convenience for the user to

verify the entered code. The LCD’s purpose is to display the numbers being entered on the

keypad and then display either “LOCKING”, “UNLOCKING”, or “INCORRECT CODE”

depending on whether the entered code is correct or the star button is pressed to lock the door.

2. LED Strip

○ Interfaced with an Arduino Uno

○ Powered by 12V battery pack

○ Seamlessly integrated with LDC readout

○ Appealing use of colors for enhanced user experience

An RGB LED strip borders the control box. The LED strip is an additional component to

improve overall user experience; acting as an extension of the LCD display. When the system is

turned on, white light will always be present so that the user can see the display and keypad. The

LED strip then turns blue when locking, green when unlocking, red with an incorrect code, and

then returns to white when the LCD screen clears.

12

Category B: Audio Output Device

1. Speaker with software controlled frequency tones

○ Distinct tones for each type of input (single key press, Unlocking, Locking,

Incorrect Code)

○ Serves as a backup feedback system for the user in the event that the LCD display

and LED strip are damaged

○ Seamlessly integrated with LCD readout

To further improve user experience, a small speaker is implemented in the system. This

speaker is integrated with the keypad so that it makes a distinct noise after each key press. This

simple sound will provide the user with an auditory experience as it ensures when a key is

pressed. In addition, the speaker will emit unique sounds when the code is entered correctly,

incorrectly, or when the door locks.

Category C: Manual User Input

1. 12-Digit Keypad

○ Provides intuitive operation

○ Effective interfacing between controlling PIC and the Arduino

○ Provides tactile feedback for the user

One of the main components of the security system is the tactile numeric keypad. This

keypad has four rows and three columns consisting of numbers 0-9 as well as ‘*’ and ‘#.’ In

order to unlock the door, a series of predetermined numbers must be entered into the keypad in

the correct order. The keypad is the primary means of user input as the door cannot be unlocked

without the keypad.

Category D: Automatic Sensor

1. Photoresistor

○ Reliable use of photoresistor to detect varying levels of light sensitivity

○ Controlled with a PIC and interfaced with an Arduino Uno

○ Low cost and unique means of improving Smart Lock functionality

13

○ Ideally, A/D conversion would have been used, though, due to time constraints

this function was limited

When considering user needs, it was apparent that implementing a feature that would

automatically lock the door at night would be beneficial. Thus, a photoresistor is used to detect

when it becomes dark outside, which then triggers the locking mechanism. This photoresistor is

placed on the exterior of the model garage. Ideally, the sensitivity would be determined from

testing various darkness levels outside (different times in the evening), therefore, as an

improvement of the system, this feature would be implemented. Given the complexity of

integrating the entire Smart Lock system, there was not enough time to implement this feature.

2. Ultrasonic Sensor

○ Low cost sensor that provides unique functionality to the system

○ Controlled with a PIC and interfaced with an Arduino Uno

○ Used to determine vehicle presence

In addition to a photoresistor, having a system that will detect the presence of the user’s

automobile was desired to increase the security systems versatility and usability. To

accommodate this desired feature, an ultrasonic sensor was placed in the user's garage. This

ultrasonic sensor is placed on the garage front wall and is able to communicate when the user’s

automobile has left the garage and, therefore, is not home. If the user’s car is not in the garage,

the system automatically locks the main door.

Category E: Actuators, Mechanisms and Hardware

1. Solenoid driven deadbolt

○ Utilizes a relay to isolate 12V required to operate the deadbolt

○ Magnetic faceplate prevents the door from locking when opened

○ Efficient design and implementation reduced complexity and cost

To effectively implement the security system, a locking mechanism was essential. This

locking mechanism not only had to be strong enough to withstand forced entry, but it also

needed to be able to integrate with every other fundamental component of the system. The lock

is a deadbolt that is actuated with a solenoid. When the logic conditions are met, a current runs

through the solenoid, thereby causing the deadbolt to move into position. Once the correct code

14

is entered on the keypad, the lock will turn “OFF” and a spring will retract the deadbolt. A

magnetic faceplate on the door aligns with a normally open magnetic switch inside the deadbolt

mechanism. This prevents the deadbolt from extending if the door is not fully closed.

Furthermore, the deadbolt is active high so that if power is lost it will automatically unlock itself.

2. Aluminum Project Box

To effectively implement all the elements of this security system, an aluminum project

box was fitted within a wall section next to the door. The box was cut and drilled to mount the

LCD, keypad, main board, and Arduino with nylon screws as well as having openings for the

speaker and potentiometer. The goal was to seamlessly incorporate all circuitry, except the

deadbolt installed in the door frame and the photoresistor and ultrasonic sensor on the garage,

with no protruding wires or components.

Category F: Logic, Processing, Control and Miscellaneous

1. 2x PIC16F88

○ A/D converter utilized for the sensors

○ Keypad entry interpreted with polling

○ Seamless integration of PIC’s and Arduino Uno

○ Effective use of programmed logic

Two PIC16F88’s were chosen due to the number of inputs and outputs necessary in

addition to the location of components. The first PIC interprets the signals from the keypad,

through the use of polling, and sends a binary output as well as a trigger to the Arduino. The

purpose of the trigger is to let the Arduino know if one digit is pressed twice. The second PIC is

on the garage sensor board and acts as an A/D converter for the photoresistor and pulse length

reader for the ultrasonic sensor. This allowed for using a minimal number of wires to connect the

garage sensors to the Arduino as one output was used for both sensors and power simply had to

be provided to the sensor board.

2. Arduino Uno R3

○ Effectively performs logic

○ Handles the systems control and data processing

15

The Arduino Uno is the master controller for the system. It receives inputs via both PICs

and sends output signals to the speaker, LCD, LED strip, and the lock. Almost every available

pin is used on the Arduino. As the Arduino was the central controller it had the most complicated

logic as it had to control all inputs and outputs; this is evident in the lines of code represented in

Appendix B.

Overall Performance

 Each unique component of the system operates as intended. The system as a whole is

effectively integrated, with no redundancies, or other faulty components. Due to a simplified

wiring diagram, each circuit consisted of short wires and electrical components, all soldered into

place. These soldered circuits created a reliable system, with little to no errors. In addition, the

software is efficiently dispersed among the various microcontrollers, thereby reducing hardware

and complexity.

 Though some aspects of the security system were demonstrated in lecture and lab, a lot of

research and troubleshooting was required to achieve the desired result. Additionally, a custom

door and scaled garage were created to better present the functionality of the security system.

Overall, the Smart Lock Security System employs simplified user functionality while

maintaining a clean design at half the cost of market competitors.

16

Partial Parts List

Listed below in Table 1 is a partial list of components which is organized by functional

group. This partial list consists of unique and prominent components used in the Smart Lock

Security System and does not list common electrical components such as resistors and

capacitors.

* Indicates the price before shipping and handling costs.

Table 1: Partial Parts List

Partial Parts List

Category Part Manufacturer

Part Number

Description *Price

for one

Output

Display

LCD Screen

Elegoo

LCD 1602

(from UNO R3

Starter Kit)

1 Displays keypad inputs in

terms of numeric values

(1234) as well as status of

door lock (LOCKING,

UNLOCKING, etc.).

$5.99

LED Strip

Yetda Industry

Ltd.

5060BRG4

1 Displays white light

constantly when power is

on. Displays blue when

deadbolt is being locked,

green when door is being

unlocked, and red when an

incorrect code is inputted.

14.95

Audio Output

Device

Mini Speaker

Sparkfun

COM-07950

RoHS

1 Indicates user input in

keypad by producing a

single tone. Also outputs

different tones based on

entered keypad code or

locking state.

$1.95

Manual User

Input

12 Button

Keypad

Sparkfun

COM-14662

1 User inputs a predetermined

code (4 successive

numbers) and then presses

the “#” key to unlock the

door. If the code is

incorrect, the door remains

locked. The “*” key locks

$4.50

https://www.sparkfun.com/static/rohs/
https://www.sparkfun.com/static/rohs/
https://www.sparkfun.com/static/rohs/

17

the door and resets the

inputted code.

Automatic

Sensor

Mini Photocell

Sparkfun

SEN-09088

1 If unlocked, deadbolt is

activated when it becomes

dark outside.

$1.50

Ultrasonic

Distance Sensor

Sparkfun

SEN-15569

1 Indicates when a car is not

in the garage which then

activates the deadbolt so

that the door is locked.

$3.95

Actuators,

Mechanisms,

Hardware

NC DC 12V,

Electric Drop

Bolt Door Lock

Deadbolt Strike

Fail-Safe Mode

Zoter

EDL-DB200

1 The main locking

mechanism that is

controlled with a built in

solenoid. It is attached to

the door frame and includes

a magnetic faceplate to

prevent the door from

locking when not aligned.

$24.99

Aluminum Mini-

box 10 x 6 x 3.5

in.

Bud Industries

Inc.

CU-3010-A

1 Houses a majority of the

components

21.68

Logic

Processing,

Control, and

Misc

Arduino Uno Arduino

8058333490137

1 Handles logic, control and

data processing for entire

system. Integrates with

seperate PIC

microcontrollers.

$20.90

18

PIC16F88

Microchip

PIC16F88

2 One of the PIC’s controls

the inputs from the keypad.

The other PIC controls the

photoresistor by converting

analog inputs to digital and

reads the pulse width of the

proximity sensor. Both

PIC’s are integrated with

the Arduino Uno.

$2.60

12V/5V Battery

TalentCell

YB1206000-

USB

1 Supplies backup power to

the entire system in the

event of a power outage.

The 12V output will be used

to power the deadbolt and

the 5V output will power

the rest of the system.

$33.99

 Total Parts

Cost

 $137.00

The actual total cost of the Smart Lock Security System was less than listed due to many

free components. Components such as the ultrasonic distance sensor, photocell, Arduino Uno,

and LCD screen were all taken from provided lab materials. Thus, the out of pocket cost of

manufacturing and all purchased parts (including soldering boards, fasteners, and other

miscellaneous items) was $98.73.

The overall price for the Smart Lock Security System is very competitive in relation to

other automatic locking doors that are on the market. The generic locking door on the market

does not include any sort of display screen or any additional features besides a keypad such as

sensors. A lower end door lock costs roughly $90.00 while a higher end model costs around

$300.00. Examples of higher and lower quality locks are shown below in Figures 12 and 13.

19

Figure 12: Low Cost Market Competitor

Figure 13: High Cost Market Competitor

20

Lessons Learned

Group availability/scheduling

Initially when working on our project and the deliverables, we ran into difficulties

with aligning our schedules. We found ourselves meeting two or three people at a time

and utilizing a group text to communicate updates and send pictures. This worked very

well for the majority of the project. In the last month of the semester, we all sacrificed a

lot toward working as much as we could on this project. Even if one lab partner had only

a small window of time, they came to the lab to help troubleshoot and work on whatever

needed to get done. We utilized everyone's strengths within the project tasks to get things

done well and efficiently.

 For future students, we would recommend communicating as much as possible

within the group. Knowing where the project is at and what needs to get done next makes

time in the lab much more efficient as less time is wasted figuring out the status of the

system.

LCD Issues

At many points while working on the project, our LCD screen would stop

working. One of the most common issues was that our screen would completely stop

displaying. The rest of the system would work with no issues while our LCD would not

display a single command. It was usually a connection issue so we would look over the

wiring diagram to ensure everything was connected correctly. In addition, wiggling and

pushing on the connection between the female ports on breadboard and the pins soldered

onto the LCD fixed this issue. Another issue we faced was the LCD showing incorrect

letters and symbols instead of the correct message. This issue usually happened when one

of the inputs into the Arduino from the PIC was loose or incorrect. Efficiently arranging

components and circuit boards to reduce ground loops also helped resolve the problem.

For future students, the main lesson learned is to not get defeated when one

component stops working and instead start troubleshooting. Our project got to a point

where everything was set up perfectly, but it randomly would all stop working. It was

usually a simple fix that took some time and messing around, but if you just keep

troubleshooting you will eventually figure out the issue. One of the main keys to

21

troubleshooting is to immediately verify voltage values at all areas of the problematic

circuit and compare them with the desired value. Often, one component had gone bad or

a small wire had lost contact. These issues can be difficult to spot but are easy to fix once

identified. Additionally, be conscious of electromagnetic interference (EMI) fields when

integrating all components, as such fields can interfere with the systems performance.

Analog vs Digital Sensor Issues

The last components that were integrated into the system were the ultrasonic

sensor and the photoresistor. The ultrasonic sensor needed to be calibrated with the height

of the scaled down garage with and without a toy car in it, so it was put off until the

garage model was made. We had lots of success with the proximity sensor during tests

using a clipboard and holding it at different distances from the sensor, using the measured

pulse width. When it was installed into the ceiling of the garage and calibrated, it stopped

working correctly because the signal was not bouncing off the soft cardboard correctly. It

was then installed into the back wall of the garage to try and resolve this issue. There

were still issues after the change in location that we assumed to be from the sensor code,

but we ran out of time to pinpoint where the error was coming from. Fortunately, the

proximity code ended up working during the class presentation with no change to it’s

code. Issues with the photoresistor also developed two hours before the lab presentation.

Although the analog code for the photoresistor had performed well in the past with high

accuracy, issues with its accuracy had been identified due to it not being compared to a

value with enough bits and being left justified. The code was then updated but it was

never tested as the team opted to switch to a digital control for simplicity and

performance reasons. Following this, it was identified that a burnt out photoresistor was

creating issues in the system. The photoresistor was replaced and then used with the

digital version of the code.

 Some advice for future students is to use the simplest code possible. Even if you

know a more intricate code that could work, it will usually cause more issues than a

simplified code would. Our analog code was initially working, and began failing when it

was integrated, while the simpler digital signal worked with the integrated system.

22

Integrating

Most of the issues with the project happened while integrating all of the

components together. The relay, speaker, and deadbolt integrated well with the Arduino.

The majority of the issues were with the wiring and connections. We continuously tested

each circuit on the solderless breadboards, which had many connection issues, until the

wiring was perfect for the soldered breadboards. The computer program Fritzing was

used to create the wiring diagram. The only connection issues we ran into after we

soldered the breadboards were poor connections in the LCD socket and a few misplaced

resistors. In the installation process there were some spontaneous errors that were

potentially due to the metal box used for our housing unit. Covering the inside with

electrical tape seemed to fix most of the random errors. Further, issues from the relays on

the main soldered breadboard arose. To solve this a flyback diode and pull down resistor

were added to the control.

 Advice for future students is to figure out how one component works at a time

and then integrate it into the system. It is smart to start with the hardest part such as the

LCD and the keypad. If they stop working while integrating them, or if an already

integrated component stops working, it is always smart to remake it on the solderless

breadboard by itself and test it with some indicator such as a single LED. As more

components were added to our system, it became obvious that transistors were needed as

the Arduino could not send enough power through all of its outputs.

A note on Perseverance and Patience:

 At the end of the day it came down to the group's willingness to succeed. At

times, components and circuits would work for no apparent reason. Individuals

frequently spent late nights in the lab trying to get circuits to work. When something does

not work, it can be incredibly frustrating but you have two choices: to let that frustration

get to you and cloud your judgement or to take a deep breath and approach the problem

with a positive attitude.

Advice for future students would be to not give up. When things do not work and

frustration builds, take a step back, take a deep breath, and try to approach the problem

from a different angle or ask other students for advice. You can get the project to work

23

you just have to be willing to make the sacrifice to put in the hours and the research. At

several points our group thought we were not going to make it or demonstrate a working

project, but we learned to collect ourselves and pull through.

24

Appendix A: Detailed Wiring Diagrams

25

Appendix B: Code

Arduino Code

/*

 LiquidCrystal Library - Hello World

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal

 library works with all LCD displays that are compatible with the

 Hitachi HD44780 driver. There are many of them out there, and you

 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD

 and shows the time.

 The circuit:

 * LCD RS pin to digital pin 12

 * LCD Enable pin to digital pin 11

 * LCD D4 pin to digital pin 5

 * LCD D5 pin to digital pin 4

 * LCD D6 pin to digital pin 3

 * LCD D7 pin to digital pin 2

 * LCD R/W pin to ground

 * LCD VSS pin to ground

 * LCD VCC pin to 5V

 * 10K resistor:

 * ends to +5V and ground

 * wiper to LCD VO pin (pin 3)

// include the library code:

#include <LiquidCrystal.h>

// initialize the library by associating any needed LCD interface pin

// with the arduino pin number it is connected to

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;

const int blue=8, red=9, green=13;

const int sense=7;

const int KeyCode = 1234; // set the input code

const int locking = 10;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

// lcd set up taken from Hello World

void setup() {

 pinMode(14, INPUT); //setting pin 14 as an input, the trigger

26

 pinMode(15, INPUT); //setting pin 15 as an input, the LSD

 pinMode(16, INPUT); //setting pin 16 as an input

 pinMode(17, INPUT); //setting pin 17 as an input

 pinMode(18, INPUT); //setting pin 18 as an input,the MSB

 pinMode(7, INPUT); //setting pin 7 as an input the sensors

 pinMode(10, OUTPUT); //setting pin 10 as the lock output

 pinMode(8, OUTPUT);//BLUE //setting pin 8 as an LED output

 pinMode(9, OUTPUT);//RED //setting pin 9 as an LED output

 pinMode(13, OUTPUT);//GREEN //setting pin 13 as an LED output

}

void loop() {

 lcd.clear();

 int CodeCount = 0; // the number of numbers entered starts as zero

 int CodeStore = 0; // variable to store the current code inputted

 int inputVariable=2396 //the current number being outputted by the

keypad PIC, it starts as a number it will never be

 int J = -1; // determine positive edge triggering so the photo

 sensor will not constantly actuate in the dark

 digitalWrite(locking, HIGH); //initialize lock in locking position

 digitalWrite(blue, HIGH); //set LED to white

 digitalWrite(red, HIGH); //set LED to white

 digitalWrite(green, HIGH); //set LED to white

 // set loop so it is continuously running

 while (1== 1){

 if (digitalRead(sense)== HIGH && J==1)

//Reports that the sensor input has gone high; J can only be reset if the sensor is low when it is

//unlocked

{

 lcd.setCursor(0, 0); // set the cursor to the top left

 lcd.print("LOCKING"); //Display locking on the LCD

 digitalWrite(locking, HIGH); //lock deadbolt

 digitalWrite(green, LOW); //display blue on LED

 digitalWrite(red, LOW); //display blue on LED

 tone(6, 329, 250); //play locking tone

 delay(250);

 tone(6, 415, 750);

 delay(100);

 tone(6, 261, 250);

 delay(1000);

 CodeCount = 0; //Reset logic variables

 CodeStore = 0;

 lcd.clear(); //Clear LCD screen

 J=-1; //set J to negative so it can not continually actuate

27

 digitalWrite(green, HIGH); //set LED back to white

 digitalWrite(red, HIGH); //set LED back to white

 }

 if (digitalRead(14) == HIGH){ // if the trigger goes high enter this if statement

 delay(100); // allow the numeric inputs to set

 inputVariable= digitalRead(15)+digitalRead(16)*2+digitalRead(17)*4+digitalRead(18)*8;

 //set the input variable to correspond to the input values

 delay(100);

 if (inputVariable == 10){ //star has been pressed and is being reported

 lcd.setCursor(0, 0); // set the cursor to the top left

 lcd.print("LOCKING"); //display locking on the lcd display

 digitalWrite(green, LOW); //display blue

 digitalWrite(red, LOW); //display blue

 digitalWrite(locking, HIGH); //lock the deadbolt

 // lock the lock set the lights

 tone(6, 329, 250); //play chime for locking

 delay(250);

 tone(6, 415, 750);

 delay(100);

 tone(6, 261, 250);

 delay(1000); // pause for 1 second to show the screen print out

 CodeCount = 0; //reset the logic variables

 CodeStore = 0;

 inputVariable=2396;

 lcd.clear(); //clear LCD

 J=-1; //set J to negative so it can not continually actuate

 digitalWrite(green, HIGH); //set LED back to white

 digitalWrite(red, HIGH); //set LED back to white

 // clear lcd for future use

 }else if (CodeCount == 0 && inputVariable!=10 && inputVariable!=12){

 // enter this when the first digit has been pressed

//and the digit actuated is not # or *

 CodeStore= 1000 * inputVariable; // Stores the variable in the thousands place of

//code store.

 CodeCount = CodeCount+1 //increments code store by one for the next number

//to be pressed

 lcd.setCursor(0, 0);

 lcd.print(inputVariable, DEC); //displays first number pressed in the first place

 tone(6, 400, 250); //have speaker beep once

 }else if (CodeCount== 1 && inputVariable!=10 && inputVariable!=12){

 // enter this when the second digit has been

 // pressed and the digit actuated is not # or *

28

 CodeStore= CodeStore+ (100* inputVariable); // store the pressed number in the

//hundreds place

 CodeCount= CodeCount+1; // increment code count to 2 for the 3rd number

 lcd.setCursor(1, 0); //place cursor in position for the second number pressed

 lcd.print(inputVariable, DEC); //display second number pressed

 tone(6, 400, 250); //play tone

 }else if (CodeCount== 2 && inputVariable!=10 && inputVariable!=12){

 // if the third number is being pressed and it is not # or *

 CodeStore= CodeStore+ (10* inputVariable); // Store the number in the tens place

 CodeCount= CodeCount+1; // increment for the next number

 lcd.setCursor(2, 0);

 lcd.print(inputVariable, DEC); //display third number pressed

 tone(6, 400, 250); //play tune

 }else if (CodeCount== 3 && inputVariable!=10 && inputVariable!=12){

 // if the fourth number is being pressed and it is not # or *

 CodeStore= CodeStore+ (1* inputVariable); //store the number in the ones place

 CodeCount= CodeCount+1; // increment for the enter pound symbol place

 lcd.setCursor(3, 0);

 lcd.print(inputVariable, DEC);

 tone(6, 400, 250); //play tone

 }else if (CodeCount== 4 && inputVariable==12){

 // if four numbers have been entered and pound is pressed enter the unlocking and

 //incorrect code statements

 if (CodeStore == KeyCode){ // if the code is correct

 lcd.setCursor(0, 0);

 lcd.print("Unlocking");

 digitalWrite(blue, LOW); //display green

 digitalWrite(red, LOW);

 digitalWrite(locking, LOW); //unlock deadbolt

 tone(6, 261, 200); //play tone

 delay(200);

 tone(6, 329, 300);

 delay(300);

 tone(6, 261, 750);

 if (digitalRead(7)==LOW){

 J=1; //Reset J for the positive edge trigger on the photo sensor

 }

 }else { // if the code does not match then it is incorrect

 lcd.setCursor(0, 0);

 lcd.print("INCORRECT CODE");

29

 digitalWrite(blue, LOW); //display red on LEDs

 digitalWrite(green, LOW); //play tone

 tone(6, 1500, 200);

 delay(300);

 tone(6, 1500, 200);

 }

 delay(1000); // show the screen for five seconds then clear and reset variables

 CodeCount = 0;

 CodeStore = 0;

 inputVariable=2396;

 lcd.clear();

 digitalWrite(green, HIGH); //set LED back to white

 digitalWrite(red, HIGH);

 digitalWrite(blue, HIGH);

 }

 }

 }

}

30

Keypad PIC Code

‘Set the oscillation speed to 4 MHz

DEFINE OSC 8

OSCCON.4 = 1

OSCCON.5 = 1

OSCCON.6 = 1

'Turn off the A/D converter

ANSEL = 0

Row1 Var PORTB.7

Row2 Var PORTB.6

Row3 Var PORTB.5

Row4 Var PORTB.4

Col1 Var PORTB.2

Col2 Var PORTB.1

Col3 Var PORTB.0

‘Define inputs and output variables

EightPlace Var PORTA.2

FourPlace Var PORTA.3

TwoPlace Var PORTA.4

OnePlace Var PORTA.1

' Disable PORTB pull-ups

OPTION_REG = $FF

'Initialize the I/O (RB7: RB4 and RB3 as inputs and RB2: RB0 as outputs)

TRISB = %11111000

TRISA = %00000000

Define what's an input and output

' Keypad polling loop

Low EightPlace: Low FourPlace: Low TwoPlace: low OnePlace

Mainloop:

 ' Check column 1

 Low Col1: High Col2 : High Col3

 If (Row1 == 0) Then

 'Key 1 is down

 Low EightPlace: Low FourPlace: Low TwoPlace: High OnePlace

 EndIf

 If (Row2 == 0) Then

 'Key 4 is down

 Low EightPlace: High FourPlace: Low TwoPlace: Low OnePlace

 EndIf

 If (Row3 ==0) Then

31

 ' key 7 is down

 Low EightPlace: High FourPlace: High TwoPlace: High OnePlace

 Endif

 If (Row4 == 0) Then

 ' Key * is down

 High EightPlace: Low FourPlace: High TwoPlace: Low OnePlace

 EndIf

 ' check column 2

 High Col1: Low Col2: High Col3

 If (Row1 == 0) Then

 ' Key 2 is down

 Low EightPlace: Low FourPlace: High TwoPlace: Low OnePlace

 EndIf

 If (Row2 == 0) Then

 ' Key 5 is down

 Low EightPlace: High FourPlace: Low TwoPlace: High OnePlace

 EndIf

 If (Row3 ==0) Then

 ' key 8 is down

 High EightPlace: Low FourPlace: Low TwoPlace: Low OnePlace

 Endif

 If (Row4 == 0) Then

 'Key 0 is down

 High EightPlace: Low FourPlace: High TwoPlace: High OnePlace

 EndIf

 ' Check column 3

 High Col1: High Col2: Low Col3

 If (Row1 == 0) Then

 'Key 3 is down

 Low EightPlace: Low FourPlace: High TwoPlace: High OnePlace

 EndIf

 If (Row2 == 0) Then

 'Key 6 is down

 Low EightPlace: High FourPlace: High TwoPlace: Low OnePlace

 EndIf

 If (Row3 ==0) Then

32

 ' key 9 is down

 High EightPlace: Low FourPlace: Low TwoPlace: High OnePlace

 Endif

 If (Row4 == 0) Then

 'Key # is down

 High EightPlace: High FourPlace: Low TwoPlace: Low OnePlace

 EndIf

Goto Mainloop

End

33

Digital Sensor PIC Code

'Set the oscillating speed to 4MHz

DEFINE OSC 8

OSCCON.4 = 1

OSCCON.5 = 1

OSCCON.6 = 1

'Turn off the A/D converter

ANSEL = 0

BRIGHTOUT Var PORTB.0

LIGHTIN var PORTA.0

pulseout var PORTB.1 'trig

echoin var PORTA.1 'eco

a VAR WORD

'Define the output and input variables

' Disable PORTB pull-ups

OPTION_REG = $FF

'Initialize the I/O

TRISB = %00000000

TRISA = %11111111

'Define Inputs and Outputs

Mainloop:

low BRIGHTOUT

'Set the Led low to begin to not trigger the lock

if (LIGHTIN == 0) Then

' if the photoresistor goes low trigger the output

 HIGH BRIGHTOUT

 pause 200

 low BRIGHTOUT

endif

high pulseout

pauseus 10

low pulseout

'Send a pulse out to operate the proximity sensor

PULSIN echoin, 1, a

'Measure the incoming pulse from the proximity sensor

a = a/580

'Convert the incoming pulse width to cm

if (a > 17) then

'If the distance is greater than 17 cm trigger the output

34

 high BRIGHTOUT

 pause 200

 low BRIGHTOUT

 endif

Goto Mainloop

End

35

Original Analog Sensor PIC Code

'Set the oscillation speed to 4 MHz

DEFINE OSC 4

OSCCON.4 = 1

OSCCON.5 = 1

OSCCON.6 = 1

DEFINE ADC_BITS 8

DEFINE ADC_SAMPLEUS 50

define ADC_CLOCK 3

ANSEL = %00000001

ADCON0= %11000101

ADCON1= %01000000

'Turn on and define the digital to analog converter and set to left justified

'ANSELH = %00000000

TRISA = %11111111

TRISB = %00000000

'Set the inputs and outputs

lockout Var PORTB.0

adval VAR BYTE

pulseout var PORTB.1 'trig

echoin var PORTA.1 'eco

low lockout

a VAR WORD

‘Define the input and output variables as well as the storage variables

Mainloop:

ADCIN 000, adval

'Store the analog input in adval

 if (adval <= %00111111) Then

‘Compare the analog input so when it goes low the output is turned high

 HIGH lockout

 pause 100

 low lockout

 endIF

high pulseout

pauseus 10

low pulseout

'Send a pulse to run the proximity sensor

PULSIN echoin, 1, a

'Measure the return pulse from the proximity sensor

36

a = a/580

'Convert the pulse width to centimeters

if (a > 17) then

'If the value is greater then 17 cm turn on the trigger

 high lockout

 pause 100

 low lockout

 endif

Goto Mainloop

End

37

New, Untested Analog Sensor PIC Code

'This code is exactly the same as the above code except the analog input was changed to be

'Right biased, and the value was compared with a more accurate bit size unfortunately there

'was not time to test this code

DEFINE OSC 4

OSCCON.4 = 1

OSCCON.5 = 1

OSCCON.6 = 1

'Turn off the A/D converter

DEFINE ADC_BITS 8

DEFINE ADC_SAMPLEUS 50

define ADC_CLOCK 3

ANSEL = %00000001

ADCON0= %11000101

ADCON1= %11000000

'ANSELH = %00000000

TRISA = %11111111

TRISB = %00000000

lockout Var PORTB.0

adval VAR word

pulseout var PORTB.1 'trig

echoin var PORTA.1 'eco

low lockout

a VAR WORD

Mainloop:

ADCIN 000, adval

 if (adval <= %0000000000111111) Then

 HIGH lockout

 pause 100

 low lockout

 endIF

high pulseout

pauseus 10

low pulseout

PULSIN echoin, 1, a

a = a/580

38

if (a > 17) then

 high lockout

 pause 100

 low lockout

 endif

Goto Mainloop

End

39

References

Alciatore, D., 2019, Introduction to Mechatronics and Measurement Systems, McGraw Hill

Education, New York, NY, Chap. 7

Iovine, John., 2004, PIC Microcontroller Project Book: for PICBasic and PICBasic Pro

Compilers, McGraw Hill Education.

● “Hello World”

○ Arduino Liquid Crystal Library

○ https://www.arduino.cc/en/Tutorial/HelloWorld

https://www.arduino.cc/en/Tutorial/HelloWorld

